APPLIED LASER, Volume. 43, Issue 10, 196(2023)
Research Progress of Silk Optical Devices
[2] [2] BALYTIS A, RYU M, WANG X W, et al. Silk: Optical properties over 12.6 octaves THz-IR-visible-UV range[J]. Materials, 2017, 10(4): 356.
[3] [3] KANG T, CHO Y, YUK K M, et al. Fabrication and characterization of novel silk fiber-optic SERS sensor with uniform assembly of gold nanoparticles[J]. Sensors, 2022, 22(22): 9012.
[4] [4] APPLEGATE M B, PEROTTO G, KAPLAN D L, et al. Biocompatible silk step-index optical waveguides[J]. Biomedical Optics Express, 2015, 6(11): 4221-4227.
[5] [5] PRAJZLER V, ARIF S, MIN K, et al. All-polymer silk-fibroin optical planar waveguides[J]. Optical Materials, 2021, 114: 110932.
[6] [6] PARKER S T, DOMACHUK P, AMSDEN J, et al. Biocompatible silk printed optical waveguides[J]. Advanced Materials, 2009, 21(23): 2411-2415.
[7] [7] KUJALA S, MANNILA A, KARVONEN L, et al. Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties[J]. Scientific Reports, 2016, 6(1): 1-9.
[8] [8] PRAJZLER V, MIN K, KIM S, et al. The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum[J]. Materials, 2018, 11(1): 112.
[9] [9] GUO J J, YANG C X, DAI Q H, et al. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications[J]. Sensors, 2019, 19(17): 3771.
[10] [10] SANTOS M V, SANTOS S N C, MARTINS R J, et al. Femtosecond direct laser writing of silk fibroin optical waveguides[J].Journal of Materials Science: Materials in Electronics, 2019, 30(18): 16843-16848.
[11] [11] QIAO X, QIAN Z G, LI J J, et al. Synthetic engineering of spider silk fiber as implantable optical waveguides for low-loss light guiding[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14665-14676.
[12] [12] KUNDU B, KURLAND N E, BANO S, et al. Silk proteins for biomedical applications: Bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39(2): 251-267.
[13] [13] WANG Y E, HUANG Y, BAI H Y, et al. Biocompatible and biodegradable polymer optical fiber for biomedical application: A review[J]. Biosensors, 2021, 11(12): 472.
[14] [14] LAWRENCE B D, CRONIN-GOLOMB M, GEORGAKOUDI I, et al. Bioactive silk protein biomaterial systems for optical devices[J]. Biomacromolecules, 2008, 9(4): 1214-1220.
[15] [15] WANG Y S, LI M, WANG Y. Silk: A versatile biomaterial for advanced optics and photonics[J]. Chinese Optics Letters, 2020, 18(8): 080004.
[16] [16] CHEN Q Y, LIU Y, GU K, et al. Silk-based electrochemical sensor for the detection of glucose in sweat[J]. Biomacromolecules, 2022, 23(9): 3928-3935.
[17] [17] JUNG W T, JEON J W, JANG H S, et al. Commercial silk-based electronic textiles for NO2 sensing[J]. Sensors and Actuators B: Chemical, 2020, 307: 127596.
[21] [21] APPLEGATE M, ALONZO C, GEORGAKOUDI I, et al. A simple model of multiphoton micromachining in silk hydrogels[J]. Applied Physics Letters, 2016, 108: 241903.
[22] [22] WANG J Y, DONG J F. Optical waveguides and integrated optical devices for medical diagnosis, health monitoring and light therapies[J]. Sensors, 2020, 20(14): 3981.
Get Citation
Copy Citation Text
Sun Haojie. Research Progress of Silk Optical Devices[J]. APPLIED LASER, 2023, 43(10): 196
Received: Aug. 22, 2023
Accepted: --
Published Online: May. 23, 2024
The Author Email: