Chinese Journal of Lasers, Volume. 49, Issue 10, 1002601(2022)

Progress in Preparation of Medical Functional Surfaces by Femtosecond Laser-Induced Micro/Nanostructures

Yimeng Wang1 and Yingchun Guan1,2,3,4、*
Author Affiliations
  • 1School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
  • 2National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China
  • 3International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100083, China
  • 4Ningbo Innovation Research Institute, Beihang University, Ningbo 315800, Zhejiang, China
  • show less
    References(165)

    [1] Kurtz S, Mowat F, Ong K et al. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002[J]. The Journal of Bone and Joint Surgery, 87, 1487-1497(2005).

    [2] Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials[J]. Acta Metallurgica Sinica, 53, 257-297(2017).

    [3] Breine U, Branemark P I, Johanson B. Regeneration of bone marrow. A clinical and experimental study (preliminary report)[J]. Acta Chirurgica Scandinavica, 122, 125-130(1961).

    [4] Zhang W Y. Research status and application progress of biomedical metal materials[J]. Metal World, 21-27(2020).

    [5] Deligianni D, Katsala N, Ladas S et al. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption[J]. Biomaterials, 22, 1241-1251(2001).

    [6] Scarano A, Piattelli M, Caputi S et al. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study[J]. Journal of Periodontology, 75, 292-296(2004).

    [7] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 8, 3888-3903(2012).

    [8] Qu W T, Sun X G, Yuan B F et al. Tribological behaviour of biomedical Ti-Zr-based shape memory alloys[J]. Rare Metals, 36, 478-484(2017).

    [9] Jin M, Lu X, Qiao Y et al. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys[J]. Rare Metals, 35, 140-148(2016).

    [10] Oliveira N T C, Ferreira E A, Duarte L T et al. Corrosion resistance of anodic oxides on the Ti-50Zr and Ti-13Nb-13Zr alloys[J]. Electrochimica Acta, 51, 2068-2075(2006).

    [11] Elias L M, Schneider S G, Schneider S et al. Microstructural and mechanical characterization of biomedical Ti-Nb-Zr (-Ta) alloys[J]. Materials Science and Engineering A, 432, 108-112(2006).

    [12] Fukuda A, Takemoto M, Saito T et al. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments[J]. Acta Biomaterialia, 7, 1379-1386(2011).

    [13] Ozan S, Lin J X, Li Y C et al. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 75, 119-127(2017).

    [14] Shadanbaz S, Dias G J. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review[J]. Acta Biomaterialia, 8, 20-30(2012).

    [15] Zheng Y F, Xia D D, Chen Y N et al. Additively manufactured biodegradable metal implants[J]. Acta Metallurgica Sinica, 57, 1499-1520(2021).

    [16] Chen J X, Wang X W, Liu C et al. Recent progress in the biodegradable magnesium alloys[J]. Special Casting & Nonferrous Alloys, 41, 1273-1282(2021).

    [17] Payr E. Beiträge zur technik der blutgefäss- und nervennaht nebst mittheilungen über die verwendung eines resorbirbaren metalles in der chirurgie[J]. Arch Klin Chir, 62, 67-93(1990).

    [18] Lambotte A. Technique et indications de la prothèse perdue dans le traitement des fractures[J]. Presse Medicale, 17, 321-323(1909).

    [19] Zheng Y F, Liu B, Gu X N. Research progress in biodegradable metallic materials for medical application[J]. Materials Review, 23, 1-6(2009).

    [20] Zhou H B, Yu Z W, Liu J G. Molecular mechanism of bone regeneration promoted by medical metal implant materials[J]. Chinese Journal of Tissue Engineering Research, 26, 1588-1596(2022).

    [21] Sheng J, Sheng X Y, La P Q et al. In-situ tensile study of annealed bimodal nano/micro grained medical 316L stainless steel[J]. Ferroelectrics, 546, 158-168(2019).

    [22] Fan Y, Xu X R, Shi Z F et al. Research progress of surface modification of biomedical metallic materials[J]. Materials Reports, 34, 1327-1329(2020).

    [23] Xue X D, Ma C P, An H J et al. Corrosion resistance and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface modified by a focused fiber laser[J]. Science China Materials, 61, 516-524(2018).

    [24] Zarka M, Dikici B, Niinomi M et al. The Ti3.6Nb1.0Ta0.2Zr0.2 coating on anodized aluminum by PVD: a potential candidate for short-time biomedical applications[J]. Vacuum, 192, 110450(2021).

    [25] Chopra D, Gulati K, Ivanovski S. Micro+nano: conserving the gold standard microroughness to nanoengineer zirconium dental implants[J]. ACS Biomaterials Science & Engineering, 7, 3069-3074(2021).

    [26] Chow D H K, Wang J L, Wan P et al. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits[J]. Bioactive Materials, 6, 4176-4185(2021).

    [27] Qu X H, Yang H T, Jia B et al. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties[J]. Bioactive Materials, 6, 4607-4624(2021).

    [28] Gao Y, Huang W C, Yang C Y et al. Targeted photothermal therapy of mice and rabbits realized by macrophage-loaded tungsten carbide[J]. Biomaterials Science, 7, 5350-5358(2019).

    [29] Sun Z H, Zhang X X, Xu D et al. Silver-amplified fluorescence immunoassay via aggregation-induced emission for detection of disease biomarker[J]. Talanta, 225, 121963(2021).

    [30] Jiao E L, Sun Y, Xiao R et al. Study on the acute systemic toxicity of high-entropy alloy AlCoCrCuFeTix in mice and subcutaneous implantation in rabbits[J]. Journal of Harbin Medical University, 53, 571-575(2019).

    [31] Andrade C X, Quirynen M, Rosenberg D R et al. Interaction between different implant surfaces and liquid fibrinogen: a pilot in vitro experiment[J]. BioMed Research International, 2021, 9996071(2021).

    [32] Wang Y Y, Gong P, Zhang J. Effects of different implant surface properties on the biological behavior of Schwann cells[J]. West China journal of stomatology, 39, 279-285(2021).

    [33] Ständert V, Borcherding K, Bormann N et al. Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections[J]. Bioactive Materials, 6, 2331-2345(2021).

    [34] Doloff J C, Veiseh O, de Mezerville R et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans[J]. Nature Biomedical Engineering, 5, 1115-1130(2021).

    [35] Li Y X, Li C, Yu R et al. Application of polydopamine on the implant surface modification[J]. Polymer Bulletin, 1-21(2021).

    [36] Rieber H, Frontzek A, Heinrich S et al. Microbiological diagnosis of polymicrobial periprosthetic joint infection revealed superiority of investigated tissue samples compared to sonicate fluid generated from the implant surface[J]. International Journal of Infectious Diseases, 106, 302-307(2021).

    [37] Barrère F, Mahmood T A, de Groot K et al. Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions[J]. Materials Science and Engineering R, 59, 38-71(2008).

    [38] Zaffora A, di Franco F, Virtù D et al. Tuning of the Mg alloy AZ31 anodizing process for biodegradable implants[J]. ACS Applied Materials & Interfaces, 13, 12866-12876(2021).

    [39] Dong H Z, Virtanen S. Anodic ZnO microsheet coating on Zn with sub-surface microtrenched Zn layer reduces risk of localized corrosion and improves bioactivity of pure Zn[J]. Coatings, 11, 486(2021).

    [40] Aliasghari S, Skeldon P, Thompson G E. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings[J]. Applied Surface Science, 316, 463-476(2014).

    [41] Çelik , Alsaran A, Purcek G. Effect of different surface oxidation treatments on structural, mechanical and tribological properties of ultrafine-grained titanium[J]. Surface and Coatings Technology, 258, 842-848(2014).

    [42] Heimann R B. Thermal spraying of biomaterials[J]. Surface and Coatings Technology, 201, 2012-2019(2006).

    [43] Lima R S, Marple B R. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review[J]. Journal of Thermal Spray Technology, 16, 40-63(2007).

    [44] Lin Z, Li S J, Sun F et al. Surface characteristics of a dental implant modified by low energy oxygen ion implantation[J]. Surface and Coatings Technology, 365, 208-213(2019).

    [45] Feng H Y, Yu Z L, Chu P K. Ion implantation of organisms[J]. Materials Science and Engineering R, 54, 49-120(2006).

    [46] Zhang Z Q, Zhang Y, Liu Y et al. Electro-deposition of Nd3+-doped metal-organic frameworks on titanium dioxide nanotube array coated by hydroxyapatite for anti-microbial and anticorrosive implant[J]. Ionics, 27, 2707-2715(2021).

    [47] Kumar R, Thanigaivelan R, Rajanikant G K et al. Evaluation of hydroxyapatite- and zinc-coated Ti-6Al-4V surface for biomedical application using electrochemical process[J]. Journal of the Australian Ceramic Society, 57, 107-116(2021).

    [48] Liu W C, Wang H Y, Chen L C et al. Hydroxyapatite/tricalcium silicate composites cement derived from novel two-step sol-gel process with good biocompatibility and applications as bone cement and potential coating materials[J]. Ceramics International, 45, 5668-5679(2019).

    [49] Owens G J, Singh R K, Foroutan F et al. Sol-gel based materials for biomedical applications[J]. Progress in Materials Science, 77, 1-79(2016).

    [50] Sharma V, Prakash U, Kumar B V M. Surface composites by friction stir processing: a review[J]. Journal of Materials Processing Technology, 224, 117-134(2015).

    [51] Misra R D K, Thein-Han W W, Pesacreta T C et al. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures[J]. Acta Biomaterialia, 5, 1455-1467(2009).

    [52] Weng F, Chen C Z, Yu H J. Research status of laser cladding on titanium and its alloys: a review[J]. Materials & Design, 58, 412-425(2014).

    [53] Kurella A, Dahotre N B. Review paper: surface modification for bioimplants: the role of laser surface engineering[J]. Journal of Biomaterials Applications, 20, 5-50(2005).

    [54] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).

    [55] du Plooy R, Akinlabi E T. Analysis of laser cladding of titanium alloy[J]. Materials Today: Proceedings, 5, 19594-19603(2018).

    [56] Long J Y, Fan P X, Gong D W et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 7, 9858-9865(2015).

    [57] Tian Y S, Chen C Z, Li S T et al. Research progress on laser surface modification of titanium alloys[J]. Applied Surface Science, 242, 177-184(2005).

    [58] Um S H, Lee J, Song I S et al. Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning[J]. Bioactive Materials, 6, 3608-3619(2021).

    [59] Lee B E J, Exir H, Weck A et al. Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants[J]. Applied Surface Science, 441, 1034-1042(2018).

    [60] Hsiao W T, Chang H C, Nanci A et al. Surface microtexturing of Ti-6Al-4V using an ultraviolet laser system[J]. Materials & Design, 90, 891-895(2016).

    [61] Kumari R, Scharnweber T, Pfleging W et al. Laser surface textured titanium alloy (Ti-6Al-4V)-part II: studies on bio-compatibility[J]. Applied Surface Science, 357, 750-758(2015).

    [62] A Z W, Wu Y, Xiao Y et al. Research progresses of process technology in ultrafast laser micro-hole drilling[J]. Chinese Journal of Lasers, 48, 0802013(2021).

    [63] Shi X S, Jiang L, Li X. New method and application of electronically dynamically controlled femtosecond laser surface micro nano structure controllable manufacturing[J]. Journal of Mechanical Engineering, 54, 56(2018).

    [64] Liu W, Liu S F, Wang L Q. Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications[J]. Coatings, 9, 249(2019).

    [65] Kumar K K, Samuel G L, Shunmugam M S. Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 263, 266-275(2019).

    [66] Jiang L, Hu J, Wang G Y et al. Ultrafast laser micro/nano fabrication based on electrons dynamics control[J]. China Basic Science, 18, 11-27(2016).

    [67] Chen N K, Huang Y T, Li X B et al. Recent progress on ultrafast laser-induced solid nonthermal phase transitions and atomic mechanisms[J]. Chinese Journal of Lasers, 48, 0202001(2021).

    [68] Lewis L J, Perez D. Laser ablation with short and ultrashort laser pulses: basic mechanisms from molecular-dynamics simulations[J]. Applied Surface Science, 255, 5101-5106(2009).

    [69] Bai X, Chen F. Recent advances in femtosecond laser-induced superhydrophobic surfaces[J]. Acta Optica Sinica, 41, 0114003(2021).

    [70] Li X X, Guan Y C. Theoretical fundamentals of short pulse laser-metal interaction: a review[J]. Nanotechnology and Precision Engineering, 3, 105-125(2020).

    [71] Bruneau S, Hermann J, Dumitru G et al. Ultra-fast laser ablation applied to deep-drilling of metals[J]. Applied Surface Science, 248, 299-303(2005).

    [72] Su G S[D]. Multiscale theoretical research on ultrafast laser micro nano machining based on electronic dynamic regulation, 12-20(2018).

    [73] Li S C, Li S Y, Zhang F J et al. Possible evidence of Coulomb explosion in the femtosecond laser ablation of metal at low laser fluence[J]. Applied Surface Science, 355, 681-685(2015).

    [74] Wu X F, Mei S L. Research progress in femtosecond laser machining mechanism and simulation analysis[J]. Laser & Optoelectronics Progress, 58, 1900005(2021).

    [75] Shugaev M V, Wu C P, Armbruster O et al. Fundamentals of ultrafast laser-material interaction[J]. MRS Bulletin, 41, 960-968(2016).

    [76] Wu C P, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 114, 11-32(2014).

    [77] Wang C Y, Gu Y, Shi L J et al. Development of humoral detection technology and its application prospect in space medicine research[J]. Life Science Instruments, 17, 3-19(2019).

    [78] Lü J. Causes and preventive measures of unqualified body fluid samples[J]. Guide of China Medicine, 19, 103-104(2021).

    [79] Xiao G D, Dong D M, Liao T Q et al. Detection of pesticide (chlorpyrifos) residues on fruit peels through spectra of volatiles by FTIR[J]. Food Analytical Methods, 8, 1341-1346(2015).

    [80] Guo P Z, Sikdar D, Huang X Q et al. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement[J]. Nanoscale, 7, 2862-2868(2015).

    [81] Qiu M Q, Xu Q S, Zheng S G et al. Research progress of surface-enhanced Raman spectroscopy in pesticide residue detection[J]. Spectroscopy and Spectral Analysis, 41, 3339-3346(2021).

    [82] Zhou S, Chen R, Duan M et al. Research progress of surface enhanced Raman scattering in biomedical field[J]. Technology & Development of Chemical Industry, 49, 57-61(2020).

    [83] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [84] Zhou W, Zeng J W, Li X F et al. Ultraviolet Raman spectra of double-resonant modes of graphene[J]. Carbon, 101, 235-238(2016).

    [85] Tschirner N, Lange H, Schliwa A et al. Interfacial alloying in CdSe/CdS heteronanocrystals: a Raman spectroscopy analysis[J]. Chemistry of Materials, 24, 311-318(2012).

    [86] Li H, Sun Z Y, Zhong W Y et al. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates[J]. Analytical Chemistry, 82, 5477-5483(2010).

    [87] Zou T T, Xu Z L, Yang J Y et al. Application advances of surface enhanced Raman spectroscopy in food safety detection[J]. Journal of Instrumental Analysis, 37, 1174-1181(2018).

    [88] Feng Z, Zhou J, Chen D et al. Hypersensitization immunoassay of prostate-specific antigen based on SERS of sandwich-type Au/Ag nanostructure[J]. Chinese Journal of Luminescence, 36, 1064-1070(2015).

    [89] Sun Q Y, Zhang Y Q, Sun L X et al. Microscopic surface plasmon enhanced Raman spectral imaging[J]. Optics Communications, 392, 64-67(2017).

    [90] Qian X M, Nie S M. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications[J]. Chemical Society Reviews, 37, 912-920(2008).

    [91] Ding S Y, Yi J, Li J F et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 1, 16021(2016).

    [92] Schatz G, Young M A, Duyne R P. Electromagnetic mechanism of SERS[M]. Katrin K, Martin M, Harald K. Surface-enhanced Raman scattering, 103, 19-45(2006).

    [93] Moskovits M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 57, 783-826(1985).

    [94] Otto A. Surface enhanced Raman scattering[J]. Vacuum, 33, 797-802(1983).

    [95] Ueba H. Theory of charge transfer excitation in surface enhanced Raman scattering[J]. Surface Science, 131, 347-366(1983).

    [96] Sharma B, Bugga P, Madison L R et al. Bisboronic acids for selective, physiologically relevant direct glucose sensing with surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 138, 13952-13959(2016).

    [97] Cai J, Huang J, Ge M et al. Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors[J]. Small, 13, 1604240(2017).

    [98] Dinish U S, Yaw F C, Agarwal A et al. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing[J]. Biosensors and Bioelectronics, 26, 1987-1992(2011).

    [99] Sooraj K P, Ranjan M, Rao R et al. SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays[J]. Applied Surface Science, 447, 576-581(2018).

    [100] Xu L M, Liu H G, Zhou H et al. One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection[J]. Talanta, 228, 122204(2021).

    [101] Luo X, Liu W J, Chen C H et al. Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation[J]. Optics & Laser Technology, 139, 106969(2021).

    [102] Huang Z, He W T, Shen H et al. NiCo2S4 microflowers as peroxidase mimic: a multi-functional platform for colorimetric detection of glucose and evaluation of antioxidant behavior[J]. Talanta, 230, 122337(2021).

    [103] Zhao Z T, Li Q G, Sun Y J et al. Highly sensitive and portable electrochemical detection system based on AuNPs@CuO NWs/Cu2O/CF hierarchical nanostructures for enzymeless glucose sensing[J]. Sensors and Actuators B, 345, 130379(2021).

    [104] Zhang Y, Li Y, Jia X et al. Advanced electrochromic/electrofluorochromic poly(amic acid) toward the colorimetric/fluorometric dual-determination of glycosuria[J]. Materials Today Chemistry, 21, 100497(2021).

    [105] Ramos-Soriano J, Benitez-Benitez S J, Davis A P et al. Inside cover: a vibration-induced-emission-based fluorescent chemosensor for the selective and visual recognition of glucose[J]. Angewandte Chemie International Edition, 60, 16718(2021).

    [106] Cui Z Q, Lu L B, Guan Y C et al. Enhancing SERS detection on a biocompatible metallic substrate for diabetes diagnosing[J]. Optics Letters, 46, 3801-3804(2021).

    [107] Xu L M, Zhang Z L, Cai X Y et al. Physical mechanisms of fluorescence enhancement at metal surface[J]. Chinese Journal of Luminescence, 30, 373-378(2009).

    [108] Zhao X, Dong J, Gao W et al. Progresses of surface enhanced fluorescence[J]. Laser Technology, 42, 511-520(2018).

    [109] Zhong B B, Zu X H, Yi G B et al. Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays[J]. Journal of Nanoparticle Research, 18, 281(2016).

    [110] Yin Y Q, Sun Y, Yu M et al. ZnO nanorod array grown on Ag layer: a highly efficient fluorescence enhancement platform[J]. Scientific Reports, 5, 8152(2015).

    [111] Viktor I S, Hacı A, Aleksandr A K et al. Simulation of the effect of argon pressure on thermal processes in the sputtering unit of a magnetron with a hot target[J]. Vacuum, 192, 110421(2021).

    [112] Ding L, Zhao Y Y, Li H H et al. A highly selective ratiometric fluorescent probe for doxycycline based on the sensitization effect of bovine serum albumin[J]. Journal of Hazardous Materials, 416, 125759(2021).

    [113] Zhang J R, Hu G Q, Lu L B et al. Enhancing protein fluorescence detection through hierarchical biometallic surface structuring[J]. Optics Letters, 44, 339-342(2019).

    [114] Kamalieva A N, Toropov N A, Bogdanov K V et al. Enhancement of fluorescence and Raman scattering in cyanine-dye molecules on the surface of silicon-coated silver nanoparticles[J]. Optics and Spectroscopy, 124, 319-322(2018).

    [115] Cao Q, Wang X Y, Cui Q L et al. Synthesis and application of bifunctional gold/gelatin nanocomposites with enhanced fluorescence and Raman scattering[J]. Colloids and Surfaces A, 514, 117-125(2017).

    [116] Cyrankiewicz M, Wybranowski T, Kruszewski S. Silver nanoparticles as enhancing substrates for Raman and fluorescence spectroscopy[J]. Acta Physica Polonica A, 125, 11-15(2014).

    [117] Chang S, Eichmann S L, Huang T Y S et al. Controlled design and fabrication of SERS-SEF multifunctional nanoparticles for nanoprobe applications: morphology-dependent SERS phenomena[J]. The Journal of Physical Chemistry C, 121, 8070-8076(2017).

    [118] Lu L B, Zhang J R, Jiao L S et al. Large-scale fabrication of nanostructure on bio-metallic substrate for surface enhanced Raman and fluorescence scattering[J]. Nanomaterials, 9, 916(2019).

    [119] Cai Y K, Qi X Y, Sui L. Effect of nano morphology of implant material surface on cell osteogenesis[J]. Journal of Practical Stomatology, 35, 891-894(2019).

    [120] Huang Q L, Elkhooly T A, Liu X J et al. Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells[J]. Colloids and Surfaces B, 145, 37-45(2016).

    [121] Palin E, Liu H N, Webster T J. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation[J]. Nanotechnology, 16, 1828-1835(2005).

    [122] Mukherjee S, Dhara S, Saha P. Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: an in vitro study[J]. The International Journal of Advanced Manufacturing Technology, 76, 5-15(2015).

    [123] Shen J W[D]. Adsorption and transportation behaviors of biomolecules on nanomaterial surfaces and in nanopores, 3-5(2009).

    [124] Omanovic S, Roscoe S G. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel[J]. Langmuir, 15, 8315-8321(1999).

    [125] Kidoaki S, Matsuda T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope[J]. Langmuir, 15, 7639-7646(1999).

    [126] Laggoun R, Ferhat M, Saidat B et al. Effect of p-toluenesulfonyl hydrazide on copper corrosion in hydrochloric acid solution[J]. Corrosion Science, 165, 108363(2020).

    [127] Wang L N, Liu L J, Yan Y et al. Influences of protein adsorption on the in vitro corrosion of biomedical metals[J]. Acta Metallurgica Sinica, 57, 1-15(2021).

    [128] Strehmel C, Perez-Hernandez H, Zhang Z F et al. Geometric control of cell alignment and spreading within the confinement of antiadhesive poly (ethylene glycol) microstructures on laser-patterned surfaces[J]. ACS Biomaterials Science & Engineering, 1, 747-752(2015).

    [129] Vignesh R, Sakthinathan G, Velusamy R et al. An in-vitro evaluation study on the effects of surface modification via physical vapor deposition on the degradation rates of magnesium-based biomaterials[J]. Surface and Coatings Technology, 411, 126972(2021).

    [130] Yang K H, Ger M D, Hwu W H et al. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy[J]. Materials Chemistry and Physics, 101, 480-485(2007).

    [131] Chen J X, Zhang Y, Ibrahim M et al. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy[J]. Colloids and Surfaces B, 179, 77-86(2019).

    [132] Iaroslav G, Maksym P, Roman V et al. Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 21, 102036(2019).

    [133] Xue X D, Lu L B, He D L et al. Antibacterial properties and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface with Ag microparticles by laser treatment[J]. Surface & Coatings Technology, 425, 127716(2021).

    [134] Czy K, Marczak J, Major R et al. Selected laser methods for surface structuring of biocompatible diamond-like carbon layers[J]. Diamond and Related Materials, 67, 26-40(2016).

    [135] Kennedy O O, Yoshikiyo K, Taiji A. Controlling macroscale cell alignment in self-organized cell sheets by tuning the microstructure of adhesion-limiting micromesh scaffolds[J]. Materials Today Advances, 12, 100194(2021).

    [136] Dumas V, Guignandon A, Vico L et al. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment[J]. Biomedical Materials, 10, 055002(2015).

    [137] Zhang J R, Guan Y C, Lin W T et al. Enhanced mechanical properties and biocompatibility of Mg-Gd-Ca alloy by laser surface processing[J]. Surface and Coatings Technology, 362, 176-184(2019).

    [138] Willbold E, Weizbauer A, Loos A et al. Magnesium alloys: a stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations[J]. Journal of Biomedical Materials Research A, 105, 329-347(2017).

    [139] Zhang J R, Guan Y C. Surface functional microstructure of biomedical materials prepared by ultrafast laser: a review[J]. Chinese Optics, 12, 199-213(2019).

    [140] Martínez-Calderon M, Manso-Silván M, Rodríguez A et al. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration[J]. Scientific Reports, 6, 36296(2016).

    [141] Nuutinen T, Silvennoinen M, Päiväsaari K et al. Control of cultured human cells with femtosecond laser ablated patterns on steel and plastic surfaces[J]. Biomedical Microdevices, 15, 279-288(2013).

    [142] Zhang J R, Lin W T, Guan Y C et al. Biocompatibility enhancement of Mg-Gd-Ca alloy by laser surface modification[J]. Journal of Laser Applications, 31, 022510(2019).

    [143] Xiang T, Hou J W, Xie Hui et al. Biomimetic micro/nano structures for biomedical applications[J]. Nano Today, 35, 100980(2020).

    [144] Takayama I, Kondo N, Kalies S et al. Myoblast adhesion and proliferation on biodegradable polymer films with femtosecond laser-fabricated micro through-holes[J]. Journal of Biophotonics, 13, e202000037(2020).

    [145] Cunha A, Zouani O F, Plawinski L et al. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces[J]. Nanomedicine, 10, 725-739(2015).

    [146] Ma C P, Peng G, Nie L et al. Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement[J]. Applied Surface Science, 445, 211-216(2018).

    [147] Liang C Y, Li B F, Wang H S et al. Femtosecond lasers induced micropatterns on magnesium alloy to promote cell proliferation[J]. Rare Metal Materials and Engineering, 43, 253-256(2014).

    [148] Yang Y W, He C X, E D Y et al. Mg bone implant: features, developments and perspectives[J]. Materials & Design, 185, 108259(2020).

    [149] Chauhan P S, Kumarasamy M, Carcaboso A M et al. Multifunctional silica-coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient-derived glioblastoma[J]. Materials Science and Engineering C, 128, 112261(2021).

    [150] Godoy-Gallardo M, Eckhard U, Delgado L M et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications[J]. Bioactive Materials, 6, 4470-4490(2021).

    [151] Jenkins J, Mantell J, Neal C et al. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress[J]. Nature Communications, 11, 1626(2020).

    [152] Tripathy A, Sen P, Su B et al. Natural and bioinspired nanostructured bactericidal surfaces[J]. Advances in Colloid and Interface Science, 248, 85-104(2017).

    [153] Schlaich C, Wei Q, Haag R. Mussel-inspired polyglycerol coatings with controlled wettability: from superhydrophilic to superhydrophobic surface coatings[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 33, 9508-9520(2017).

    [154] Pogodin S, Hasan J, Baulin V A et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces[J]. Biophysical Journal, 104, 835-840(2013).

    [155] Li X L. Bactericidal mechanism of nanopatterned surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 18, 1311-1316(2016).

    [156] Xue F D, Liu J J, Guo L F et al. Theoretical study on the bactericidal nature of nanopatterned surfaces[J]. Journal of Theoretical Biology, 385, 1-7(2015).

    [157] Kelleher S M, Habimana O, Lawler J et al. Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features[J]. ACS Applied Materials & Interfaces, 8, 14966-14974(2016).

    [158] Gao D G, Zhao Z Y, Lü B et al. Research process of superhydrophobic antibacterial surfaces[J]. Fine Chemicals, 38, 874-881(2021).

    [159] Li Q Q, Bao X G, Sun J E et al. Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion[J]. Journal of Materials Science, 56, 5233-5249(2021).

    [160] Hizal F, Rungraeng N, Lee J et al. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity[J]. ACS Applied Materials & Interfaces, 9, 12118-12129(2017).

    [161] Wang R, Zhou Y M. Antibacterial properties of planting materials modified by femtosecond laser silver doping[J]. Chinese Journal of Gerontology, 33, 2307-2309(2013).

    [162] Cunha A, Elie A M, Plawinski L et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 360, 485-493(2016).

    [163] Shaikh S, Kedia S, Singh D et al. Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance[J]. Journal of Laser Applications, 31, 022011(2019).

    [164] Fadeeva E, Truong V K, Stiesch M et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 27, 3012-3019(2011).

    [165] Wu H, Liu T, Xu Z Y et al. Enhanced bacteriostatic activity, osteogenesis and osseointegration of silicon nitride/polyetherketoneketone composites with femtosecond laser induced micro/nano structural surface[J]. Applied Materials Today, 18, 100523(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yimeng Wang, Yingchun Guan. Progress in Preparation of Medical Functional Surfaces by Femtosecond Laser-Induced Micro/Nanostructures[J]. Chinese Journal of Lasers, 2022, 49(10): 1002601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 30, 2021

    Accepted: Jan. 26, 2022

    Published Online: May. 12, 2022

    The Author Email: Guan Yingchun (guanyingchun@buaa.edu.cn)

    DOI:10.3788/CJL202249.1002601

    Topics