Chinese Optics, Volume. 17, Issue 4, 971(2024)
Coronary artery angiography image vessel segmentation method based on feature pyramid network
[1] WANG H, NAGHAVI M, ALLEN C et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. The Lancet, 388, 1459-1544(2016).
[2] JIANGPING S, ZHE Z, WEI W et al. Assessment of coronary artery stenosis by coronary angiography: a head-to-head comparison with pathological coronary artery anatomy[J]. Circulation: Cardiovascular Interventions, 6, 262-268(2013).
[3] FLEMING R M, KIRKEEIDE R L, SMALLING R W et al. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography[J]. Journal of the American College of Cardiology, 18, 945-951(1991).
[4] WIJNS W, SERRUYS P W, REIBER J H et al. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy[J]. Circulation, 71, 273-279(1985).
[5] GARRONE P, BIONDI-ZOCCAI G, SALVETTI I et al. Quantitative coronary angiography in the current era: principles and applications[J]. Journal of Interventional Cardiology, 22, 527-536(2009).
[6] BLONDEL C, MALANDAIN G, VAILLANT R et al. Reconstruction of coronary arteries from a single rotational X-ray projection sequence[J]. IEEE Transactions on Medical Imaging, 25, 653-663(2006).
[7] SHECHTER G, DEVERNAY F, COSTE-MANIÈRE E et al. Three-dimensional motion tracking of coronary arteries in biplane cineangiograms[J]. IEEE Transactions on Medical Imaging, 22, 493-503(2003).
[8] SUN ZH, ZHOU Y. Assessing cardiac dynamics based on X-ray coronary angiograms[J]. J. Multim., 8, 48-55(2013).
[9] [9] FELFELIAN B, FAZLALI H R, KARIMI N, et al. Vessel segmentation in low contrast Xray angiogram images[C]. 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 2016: 375379.
[10] CHEN Y, ZHANG Y D, YANG J et al. Curve-like structure extraction using minimal path propagation with backtracking[J]. IEEE Transactions on Image Processing, 25, 988-1003(2016).
[11] JIN M X, LI R, JIANG J et al. Extracting contrast-filled vessels in X-ray angiography by graduated RPCA with motion coherency constraint[J]. Pattern Recognition, 63, 653-666(2017).
[12] BANKHEAD P, SCHOLFIELD C N, MCGEOWN J G et al. Fast retinal vessel detection and measurement using wavelets and edge location refinement[J]. PLoS One, 7, e32435(2012).
[13] [13] LI Y L, ZHOU SH J, WU J H, et al. A novel method of vessel segmentation f Xray conary angiography images[C]. 2012 Fourth International Conference on Computational Infmation Sciences, IEEE, 2012: 468471.
[14] SOARES J V B, LEANDRO J J G, CESAR R M et al. Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 25, 1214-1222(2006).
[15] [15] FRANGI A F, NIESSEN W J, VINCKEN K L, et al. Multiscale vessel enhancement filtering[C]. Proceedings of the 1st International Conference on Medical Image Computing ComputerAssisted Intervention— MICCAI’98, Springer, 1998: 130137.
[16] [16] M’HIRI F, DUONG L, DESROSIERS C, et al. Vessel walker: conary arteries segmentation using rom walks hessianbased vesselness filter[C]. 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE, 2013: 918921.
[17] DEHKORDI M T, HOSEINI A M D, SADRI S et al. Local feature fitting active contour for segmenting vessels in angiograms[J]. IET Computer Vision, 8, 161-170(2014).
[18] LAW M W K, CHUNG A C S. Efficient implementation for spherical flux computation and its application to vascular segmentation[J]. IEEE Transactions on Image Processing, 18, 596-612(2009).
[19] ORLANDO J I, PROKOFYEVA E, BLASCHKO M B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J]. IEEE Transactions on Bio-Medical Engineering, 64, 16-27(2017).
[20] ZHENG Y K, GE M F, CHANG ZH M. Super-resolution reconstruction for colorectal endoscopic images based on a residual network[J]. Chinese Optics, 16, 1022-1033(2023).
[21] BAI R F, JIANG SH, SUN H J. Real-time semantic segmentation of microvascular decompression images based on encoder-decoder structure[J]. Chinese Optics, 15, 1055-1065(2022).
[22] [22] ZHAO H SH, SHI J P, QI X J, et al. Pyra scene parsing wk[C]. 2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2017: 62306239.
[23] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[24] [24] RONNEBERGER O, FISCHER P, BROX T. U: convolutional wks f biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing ComputerAssisted Intervention – MICCAI 2015, Springer, 2015: 234241.
[25] IBTEHAZ N, RAHMAN M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 121, 74-87(2020).
[26] PAN S W, ZHANG W, ZHANG W J et al. Diagnostic model of coronary microvascular disease combined with full convolution deep network with balanced cross-entropy cost function[J]. IEEE Access, 7, 177997-178006(2019).
[27] XIAN ZH CH, WANG X Q, YAN SH D et al. Main coronary vessel segmentation using deep learning in smart medical[J]. Mathematical Problems in Engineering, 2020, 8858344(2020).
[28] [28] YANG S, KWEON J, KIM Y H. Maj vessel segmentation on Xray conary angiography using deep wks with a novel penalty loss function[C]. Proceedings of Machine Learning Research, L, 2019.
[29] JUN T J, KWEON J, KIM Y H et al. T-Net: Nested encoder-decoder architecture for the main vessel segmentation in coronary angiography[J]. Neural Networks, 128, 216-233(2020).
[30] [30] LI L ZH, VERMA M, NAKASHIMA Y, et al. Iter: retinal image segmentation utilizing structural redundancy in vessel wks[C]. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2020: 36453654.
[31] [31] LIU ZH, MAO H Z, WU CH Y, et al. A Conv f the 2020s[C]. IEEECVF Conference on Computer Vision Pattern Recognition, IEEE, 2022: 1196611976.
[32] [32] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyra wks f object detection[C]. 2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2017: 936944.
[33] [33] HU J, SHEN L, SUN G. Squeezeexcitation wks[C]. 2018 IEEECVF Conference on Computer Vision Pattern Recognition, IEEE, 2018: 71327141.
[34] [34] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Infmation Processing Systems, NIPS, 2017: 59986008.
[35] DIAKOGIANNIS F I, WALDNER F, CACCETTA P et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 94-114(2020).
[36] [36] CHEN J N, LU Y Y, YU Q H, et al. TransU: transfmers make strong encoders f medical image segmentation[J]. arXiv: 2102.04306, 2021.
Get Citation
Copy Citation Text
Hao-hu GUO, Ruo-qian GAO, Ming-feng GE, Wen-fei DONG, Yan LIU, Xu-feng ZHAO. Coronary artery angiography image vessel segmentation method based on feature pyramid network[J]. Chinese Optics, 2024, 17(4): 971
Received: Oct. 21, 2023
Accepted: --
Published Online: Aug. 9, 2024
The Author Email: