Laser Journal, Volume. 46, Issue 1, 142(2025)
Fluorescent image segmentation based on multi-scale attention
[1] [1] Samantara A K, Acharya C, Satpathy D, et al. Functionalized graphene: an unique platform for biomedical application[A]. Fullerens, Graphenes and Nanotubes, Elsevier, 2018.
[2] [2] Lakowicz J. In Principles of Fluorescence Spectroscopy[M]. Springer, US: Boston, MA, 2006.
[3] [3] Guilbault G. Practical fluorescence[M]. CRC Press, 2020.
[4] [4] Scarlata S. Unraveling hidden cell signaling pathways using biophysical methods: Application to the Gq/Phospholipase C signaling system[J]. The Journal of Physical Chemistry B, 2024, 128(9): 2057-2064.
[5] [5] Zhao W, Zhao S, Han Z, et al. Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging[J]. Nature Photonics, 2023: 1-8.
[6] [6] Guo M, Veneziano R, Gordonov S, et al. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes[J]. Nature Communications, 2019, 10(1): 4377.
[7] [7] Marioni J C, Mason C E, Mane S M, et al. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays[J]. Genome Research, 2008, 18(9): 1509-1517.
[8] [8] Mortazavi A, Williams B A, Mccue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7): 621-628.
[9] [9] Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing[J]. Science, 2008, 320(5881): 1344-1349.
[10] [10] Aydn M, Kiraz B, Eren F, et al. A deep learning model for automated segmentation of fluorescence cell images[C]//Journal of Physics: Conference Series. IOP Publishing, 2022: 012003.
[11] [11] Sit L, Brondi M, Lagomarsino De Leon Roig P, et al. A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging[J]. Nature Communications, 2022, 13(1): 1529.
[12] [12] Jang J, Wang C, Zhang X, et al. A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy[J]. Cell reports methods, 2021, 1(7): 100-105.
[13] [13] Yu K, Li Y. An Image Segmentation Algorithm for Fusing Depth Information[C]//2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, 2023: 825-828.
[14] [14] Nielsen M A. Neural networks and deep learning[M]. San Francisco, CA, USA: Determination Press, 2015.
[15] [15] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[16] [16] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.
[17] [17] Wu H, Zhang J, Huang K, et al. FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation[J]. arXiv preprint arXiv: 1903.11816, 2019.
[18] [18] Lin T-Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2117-2125.
[19] [19] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020.
[20] [20] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015.
[21] [21] Kirillov A, Girshick R, He K, et al. Panoptic feature pyramid networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 6399-6408.
[22] [22] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
[23] [23] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer - Assisted Intervention -MICCAI 2015.2015: 234-241.
[24] [24] Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 2736-2746.
[25] [25] Chandler P, Sweller J. The split ‐ attention effect as a factor in the design of instruction[J]. British Journal of Educational Psychology, 1992, 62(2): 233-246.
[26] [26] Rubinstein R. The cross-entropy method for combinatorial and continuous optimization[J]. Methodology and Computing in Applied Probability, 1999, 1: 127-190.
[27] [27] Zuckerman B, Ron M, Mikl M, et al. Gene architecture and sequence composition underpin selective dependency of nuclear export of long RNAs on NXF1 and the TREX complex[J]. Molecular cell, 2020, 79(2): 251-267.
[28] [28] Wada K. Labelme: Image polygonal annotation with python[EB/OL]. 2016.
[29] [29] Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019: 8026-8037.
[30] [30] Milletari F, Navab N, Ahmadi S-A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision (3DV). 2016: 565-571.
[31] [31] Everingham M, Van Gool L, Williams C K, et al. The pascal visual object classes (voc) challenge[J]. International journal of computer vision, 2010, 88: 303-338.
[32] [32] Kirillov A, Wu Y, He K, et al. Pointrend: Image segmentation as rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9799-9808.
[33] [33] Ranftl R, Bochkovskiy A, Koltun V. Vision transformers for dense prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 12179-12188.
[34] [34] Zheng S, Lu J, Zhao H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 6881-6890.
[35] [35] Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090.
[36] [36] Zhang W, Pang J, Chen K, et al. K-Net: Towards unified image segmentation[J]. Advances in Neural Information Processing Systems, 2021, 34: 10326-10338.
[37] [37] Xu J, Xiong Z, Bhattacharyya S P. PIDNet: A real-time semantic segmentation network inspired by PID controllers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 19529-19539.
[38] [38] Xu M, Zhang Z, Wei F, et al. Side adapter network for open-vocabulary semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 2945-2954.
[39] [39] Xie S, Girshick R, Dollr P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1492-1500.
[40] [40] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 5693-5703.
[41] [41] Koonce B, Koonce B. MobileNetV3[J]. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, 2021: 125-144.
Get Citation
Copy Citation Text
TANG Jun, CAO Zhixing, DU Wei. Fluorescent image segmentation based on multi-scale attention[J]. Laser Journal, 2025, 46(1): 142
Category:
Received: Jun. 21, 2024
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: