Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1728(2022)
Recent Progress on Portland Cement Hydration Kinetic Models and Experimental Methods
[1] [1] SCRIVENER K L, JUILLAND P, MONTEIRO P J. Advances in understanding hydration of Portland cement[J]. Cem Concr Res, 2015, 78(12): 38-56.
[2] [2] NEVILLE A M. Properties of concrete[M]. London: Longman, 1995.
[3] [3] BARNES P, BENSTED J. Structure and performance of cements[M]. Boca Raton: CRC Press, 2002.
[5] [5] SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cem Concr Res, 2011, 41(7): 651-665.
[6] [6] TAYLOR H F W. Cement Chemistry (second edition)[M]. London: Thomas Telford Publishing, 1997.
[7] [7] SCRIVENER K L. The development of microstructure during the hydration of Portland cement[D]. London: Imperial College, 1984.
[10] [10] KURDOWSKI W. Cement and Concrete Chemistry (2014 deition)[M]. Dordrecht, Netherlands: Springer, 2014.
[12] [12] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. ACI J Proceed, 1946, 43(9): 249-336.
[13] [13] FELDMAN R, SEREDA P. A new model for hydrated Portland cement and its practical implications[J]. Eng J, 1970, 53(8-9): 53-59.
[14] [14] WITTMANN F. Grundlagen eines modells zur beschreibung charakteristischer eigenschaften des betons[M]. Berlin: Wilhelm Ernst & Sohn, 1978: 42-101.
[15] [15] JENNINGS H M. Refinements to colloid model of CSH in cement: CM-II[J]. Cem Concr Res, 2008, 38(3): 275-289.
[16] [16] JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cem Concr Res, 2000, 30(1): 101-116.
[17] [17] DOLADO J S, VAN BREUGEL K. Recent advances in modeling for cementitious materials[J]. Cem Concr Res, 2011, 41(7): 711-726.
[18] [18] GONZALEZ-TERESA R, MORALES-FLOREZ V, MANZANO H, et al. Structural models of randomly packed Tobermorite-like spherical particles: A simple computational approach[J]. Mater d Constr, 2010, 60(298): 7-15.
[19] [19] CHANDLER M Q, PETERS J F, PELESSONE D. Modeling nanoindentation of calcium silicate hydrate[J]. Trans Res Record, 2010, 2142(1): 67-74.
[20] [20] KUMAR A, WALDER B J, KUNHI MOHAMED A, et al. The atomic-level structure of cementitious calcium silicate hydrate[J]J Phys Chem C, 2017, 121(32): 17188-17196.
[21] [21] OUZIA A R C W C. Modeling the kinetics of the main peak and later age of alite hydration[D]. Lausanne: EPFL, 2019.
[22] [22] RICHARDSON I G. The nature of C-S-H in hardened cements[J]. Cem Concr Res 1999, 29(8): 1131-1147.
[23] [23] TAPLIN J. A method for following the hydration reaction in portland cement paste[J]. Au J Appl Sci, 1959, 10: 329-345.
[24] [24] SCRIVENER K L, PATEL H, PRATT P, et al. Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis[J]. MRS Online Proceedings Library (OPL), 1986: 85-67.
[25] [25] DIAMOND S, BONEN D. Microstructure of hardened cement paste—a new interpretation[J]. J Am Ceram Soc, 1993, 76(12): 2993-2999.
[26] [26] TENNIS P D, JENNINGS H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes[J]. Cem Concr Res, 2000, 30(6): 855-863.
[27] [27] RICHARDSON I. Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume[J]. Cem Concr Res, 2004, 34(9): 1733-1777.
[28] [28] RICHARDSON I G. The nature of CSH in hardened cements[J]. Cem Concr Res, 1999, 29(8): 1131-47.
[29] [29] SCRIVENER K, OUZIA A, JUILLAND P, et al. Advances in understanding cement hydration mechanisms[J]. Cem Concr Res, 2019, 124(10): 105823.
[30] [30] STEIN H, STEVELS J. Influence of silica on the hydration of 3 CaO, SiO2[J]. J Appl Chem, 1964, 14(8): 338-346.
[31] [31] GARTNER E M, JENNINGS H M. Thermodynamics of calcium silicate hydrates and their solutions[J]. J Am Ceram Soc, 1987, 70(10): 743-749.
[32] [32] RODGER S A, GROVES G W, CLAYDEN N J, et al. Hydration of tricalcium silicate followed by 29Si NMR with cross-polarization[J]. J Am Ceram Soc, 1988, 71(2): 91-96.
[33] [33] JUILLAND P, GALLUCCI E, FLATT R, et al. Dissolution theory applied to the induction period in alite hydration[J]. Cem Concr Res, 2010, 40(6): 831-844.
[34] [34] CABRERA N, LEVINE M. On the dislocation theory of evaporation of crystals[J]. Philos Mag, 1956, 1(5): 450-458.
[35] [35] DOVE P M, HAN N, DE YOREO J J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior[J]. Proc Nat Acad Sci, 2005, 102(43): 15357-15362.
[36] [36] DOVE P M, HAN N. Kinetics of mineral dissolution and growth as reciprocal microscopic surface processes across chemical driving force[C]//AIP Conference Proceedings by American Institute of Physics, United States: 2007, 916(1): 215-234.
[37] [37] BULLARD J W, SCHERER G W, THOMAS J J. Time dependent driving forces and the kinetics of tricalcium silicate hydration[J]. Cem Concr Res, 2015, 74(8): 26-34.
[38] [38] ZHANG Z, HAN F, YAN P. Modelling the dissolution and precipitation process of the early hydration of C3S[J]. Cem Concr Res, 2020, 136(10): 106174.
[39] [39] BULLARD J W, FLATT R J. New insights into the effect of calcium hydroxide precipitation on the kinetics of tricalcium silicate hydration[J]. J Am Ceram Soc, 2010, 93(7): 1894-1903.
[40] [40] JUILLAND P, GALLUCCI E. Hindered calcium hydroxide nucleation and growth as mechanism responsible for tricalcium silicate retardation in presence of sucrose[J]. ACI Symposium Publication. 2018, 329: 143-154.
[41] [41] MARCHON D, JUILLAND P, GALLUCCI E, et al. Molecular and submolecular scale effects of comb‐copolymers on tri‐calcium silicate reactivity: Toward molecular design[J]. J Am Ceram Soc, 2017, 100(3): 817-841.
[42] [42] NICOLEAU L. Interactions physico-chimiques entre le latex et les phases minérales constituant le ciment au cours de l'hydratation[D]. Dijon: University of Burgundy, 2004.
[43] [43] BISHNOI S, SCRIVENER K L. Studying nucleation and growth kinetics of alite hydration using μic[J]. Cem Concr Res, 2009, 39(10): 849-860.
[44] [44] AVRAMI M. Kinetics of phase change. I General theory[J]. J Chem Phys, 1939, 7(12): 1103-1112.
[45] [45] CAHN J W. The kinetics of grain boundary nucleated reactions[J]. Acta Met, 1956, 4(5): 449-459.
[46] [46] THOMAS J J. A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration[J]. J Am Ceram Soc, 2007, 90(10): 3282-3288.
[47] [47] BERODIER E M J. Impact of the supplementary cementitious materials on the kinetics and microstructural development of cement hydration[D]. Lausanne: EPFL, 2015.
[48] [48] BAZZONI A. Study of early hydration mechanisms of cement by means of electron microscopy[D]. Lausanne: EPFL, 2014.
[49] [49] HAN S, YAN P, LIU R. Study on the hydration product of cement in early age using TEM[J]. Sci China Technol Sci, 2012, 55(8): 2284-2290.
[50] [50] BAZZONI A, MA S, WANG Q, et al. The effect of magnesium and zinc ions on the hydration kinetics of C3S[J]. J Am Ceram Soc, 2014, 97(11): 3684-3693.
[51] [51] OUZIA A, SCRIVENER K. The needle model: a new model for the main hydration peak of alite[J]. Cem Concr Res, 2019, 115(1): 339-360.
[52] [52] ZHANG Z, LIU Y, HUANG L, et al. A new hydration kinetics model of composite cementitious materials, part 1: Hydration kinetic model of Portland cement[J]. J Am Ceram Soc, 2020, 103(3): 1970-1991.
[53] [53] ZHANG Z, CHEN W, HAN F, et al. A new hydration kinetics model of composite cementitious materials, Part 2: Physical effect of SCMs[J]. J Am Ceram Soc, 2020, 103(6): 3880-3895.
[54] [54] KRSTULOVI? R, DABI? P. A conceptual model of the cement hydration process[J]. Cem Concr Res, 2000, 30(5): 693-698.
[55] [55] POWERS T C. Structure and physical properties of hardened Portland cement paste[J]. J Am Ceram Soc, 1958, 41(1): 1-6.
[56] [56] MULLER A C A, SCRIVENER K L, GAJEWICZ A M, et al. Densification of C-S-H measured by 1H NMR relaxometry[J]. J Phys Chem C, 2013, 117(1): 403-412.
[57] [57] GEIKER M. Characterisation of development of cement hydration using chemical shrinkage, in book A Practical Guide to Microstructural Analysis of Cementitious Materials[M]. Boca Raton: CRC Press, 2015: 75-106.
[58] [58] BERODIER E, SCRIVENER K. Evolution of pore structure in blended systems[J]. Cem Concr Res, 2015, 73(7): 25-35.
[59] [59] FR??AS M, CABRERA J. Pore size distribution and degree of hydration of metakaolin-cement pastes[J]. Cem Concr Res, 2000, 30(4): 561-569.
[60] [60] YAN P Y, ZHANG F. Dynamic models of hydration reaction of Portland cement and autogenous shrinkage of concrete[J]. J Railway Sci Eng, 2006, 3(1): 56-59.
[61] [61] BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cem Concr Res, 2011, 41(12): 1208-1223.
[62] [62] XU W B, LI Q B, HU Y. Water content variations in the process of concrete setting[J]. J Hydr Eng, 2017, 36(7): 92-103.
[63] [63] POWERS T C, BROWNYARD T. Studies of the physical properties of hardened Portland cement paste[J]. J Proceedings, 1946, 43(9): 469-504.
[64] [64] ZHAO K, ZHANG P, XUE S, et al. Quasi-Elastic Neutron Scattering (QENS) and its application for investigating the hydration of cement-based materials: State-of-the-art[J]. Mater Charact, 2021, 172(2): 110890.
[65] [65] MULLER A C A, SCRIVENER K L, GAJEWICZ A M, et al. Use of bench-top NMR to measure the density, composition and desorption isotherm of C-S-H in cement paste[J]. Microp Mesop Mater, 2013, 178(9): 99-103.
[66] [66] MULLER A C A, SCRIVENER K L, SKIBSTED J, et al. Influence of silica fume on the microstructure of cement pastes: New insights from H NMR relaxometry[J]. Cem Concr Res, 2015, 74(8): 116-125.
[67] [67] MULLER A C A, SCRIVENER K L. A reassessment of mercury intrusion porosimetry by comparison with 1 H NMR relaxometry[J]. Cem Concr Res, 2017, 100(10): 350-360.
[68] [68] BLIGH M W, D'EURYDICE M N, LLOYD R R, et al. Investigation of early hydration dynamics and microstructural development in ordinary Portland cement using 1H NMR relaxometry and isothermal calorimetry[J]. Cem Concr Res, 2016, 83(5): 131-139.
[69] [69] THOMAS J J, FITZGERALD S A, NEUMANN D A, et al. State of water in hydrating tricalcium silicate and Portland cement pastes as measured by quasi-elastic neutron scattering[J]. J Am Ceram Soc, 2001, 84(8): 1811-1816.
[70] [70] PETERSON V K, DAN A N, LIVINGSTON R A. Hydration of cement: The application of quasielastic and inelastic neutron scattering[J]. Phys B Phys Cond Matter, 2006, 385-386(22): 481-486.
[71] [71] WANG B, FAURE P, THIéRY M, et al. 1H NMR relaxometry as an indicator of setting and water depletion during cement hydration[J]. Cem Concr Res, 2013, 45(3): 1-14.
[72] [72] JENNINGS H M, BULLARD J W, THOMAS J J, et al. Characterization and modeling of pores and surfaces in cement paste : correlations to processing and properties[J]. J Adv Concr Technol, 2008, 6(1): 5-29.
[73] [73] BRAKEL J V, MODRY S, SVATA M. Mercury porosimetry: state of the art[J]. Powder Technol, 1981, 29(1): 1-12.
[74] [74] XUE S B, ZHANG P, WANG J J, et al. Influences of thermal damage on water transport in heat-treated cement mortar: experimental and theoretical analyses[J]. Constr Build Mater, 2021, 288(6): 123100.
[75] [75] ZHANG Q, YE G, KOENDERS E. Investigation of the structure of heated Portland cement paste by using various techniques[J]. Constr Building Mater, 2013, 38(1): 1040-1050.
[76] [76] SCRIVENER K L. Backscattered electron imaging of cementitious microstructures: understanding and quantification[J]. Cem Concr Compos, 2004, 26(8): 935-945.
[77] [77] ALLEN A J, THOMAS J J. Analysis of C-S-H gel and cement paste by small-angle neutron scattering[J]. Cem Concr Res, 2007, 37(3): 319-324.
[78] [78] SONG Y Q. Novel NMR techniques for porous media research[J]. Cem Concr Res, 2007, 37(3): 325-8.
[79] [79] ZHAO H, QIN X, LIU J, et al. Pore structure characterization of early-age cement pastes blended with high-volume fly ash[J]. Constr Build Mater, 2018, 189(11): 934-946.
[80] [80] ECKOLD G, NAGLER S E. Studying kinetics with neutrons: prospects for time-resolved neutron scattering[M]. Berlin: Springer, 2010: 20-73.
[81] [81] NAVI P, PIGNAT C. Simulation of cement hydration and the connectivity of the capillary pore space[J]. Adv Cem Based Mater, 1996, 4(2): 58-67.
[82] [82] NAVI P, PIGNAT C. Three-dimensional characterization of the pore structure of a simulated cement paste[J]. Cem Concr Res, 1999, 29(4): 507-514.
[83] [83] NAVI P, PIGNAT C. Effects of cement size distribution on capillary pore structure of the simulated cement paste[J]. Comput Mater Sci, 1999, 16(1-4): 285-293.
[84] [84] PIGNAT C, NAVI P, SCRIVENER K. Simulation of cement paste microstructure hydration, pore space characterization and permeability determination[J]. Mater Struct, 2005, 38(4): 459-466.
[85] [85] VAN BREUGEL K. Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory[J]. Cem Concr Res, 1995, 25(2): 319-331.
[86] [86] BENTZ D P. Three-dimensional computer simulation of Portland cement hydration and microstructure development[J]. J Am Ceram Soc, 1997, 80(1): 3-21.
[87] [87] BENTZ D P. Modelling cement microstructure: pixels, particles, and property prediction[J]. Mater Struct, 1999, 32(3): 187-195.
[88] [88] PARKHURST D L, APPELO C, Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R]. US Geological Survey Techniques and Methods 6-A43, Washington: USGS, 2013: 497.
[89] [89] WOLERY T: Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2010.
[90] [90] LOTHENBACH B, ZAJAC M. Application of thermodynamic modelling to hydrated cements[J]. Cem Concr Res, 2019, 123(9): 105779.
[91] [91] NORDSTROM D K, MUNOZ J L. Geochemical thermodynamics[M]. Boston: Blackwell Scientific Publications, 1988.
[92] [92] ELIZALDE M, APARICIO J. Current theories in the calculation of activity coefficients—II. Specific interaction theories applied to some equilibria studies in solution chemistry[J]. Talanta, 1995, 42(3): 395-400.
[93] [93] BABUSHKIN V, MATVEEV G, MCHEDLOV-PETROSYAN O. Thermodynamics of silicates[M]. Berlin, New York: Springer-Verlag, 1972.
[94] [94] BARRET P, BERTRANDIE D, BEAU D. Calcium hydrocarboaluminate, carbonate, alumina gel and hydrated aluminates solubility diagram calculated in equilibrium with CO2g and with Naaq+ ions[J]. Cem Concr Res, 1983, 13(6): 789-800.
[95] [95] BENNETT D, READ D, ATKINS M, et al. A thermodynamic model for blended cements. II: Cement hydrate phases; thermodynamic values and modelling studies[J]. J Nucl Mater, 1992, 190(8): 315-325.
[96] [96] DAMIDOT D, STRONACH S, KINDNESS A, et al. Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25℃ and the influence of Na2O[J]. Cem Concr Res, 1994, 24(3): 563-72.
[97] [97] REARDON E J. Problems and approaches to the prediction of the chemical composition in cement/water systems[J]. Waste Manag, 1992, 12(2/3): 221-339.
[98] [98] NEALL F B. Modelling of the near-field chemistry of the SMA repository at the Wellenberg site[R]. PSI Bericht 94-18, Villigen, Switzerland: PSI, 1994.
[99] [99] LOTHENBACH B, MATSCHEI T, M?SCHNER G, et al. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement[J]. Cem Concr Res, 2008, 38(1): 1-18.
[100] [100] MATSCHEI T, LOTHENBACH B, GLASSER F P. Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3- SiO2-CaSO4-CaCO3-H2O[J]. Cem Concr Res, 2007, 37(10): 1379-1410.
[101] [101] MATSCHEI T, LOTHENBACH B, GLASSER F P. The role of calcium carbonate in cement hydration[J]. Cem Concr Res, 2007, 37(4): 551-558.
[102] [102] LOTHENBACH B, LE SAOUT G, GALLUCCI E, et al. Influence of limestone on the hydration of Portland cements[J]. Cem Concr Res, 2008, 38(6): 848-860.
[103] [103] DAMIDOT D, LOTHENBACH B, HERFORT D, et al. Thermodynamics and cement science[J]. Cem Concr Res, 2011, 41(7): 679-695.
[104] [104] SCH?LER A, LOTHENBACH B, WINNEFELD F, et al. Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder[J]. Cem Conc Comp, 2015, 55(1): 374-382.
[105] [105] DE WEERDT K, HAHA M B, LE SAOUT G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cem Concr Res, 2011, 41(3): 279-291.
[106] [106] ANTONI M, ROSSEN J, MARTIRENA F, et al. Cement substitution by a combination of metakaolin and limestone[J]. Cem Concr Res, 2012, 42(12): 1579-1589.
[107] [107] ZAJAC M, DURDZINSKI P, STABLER C, et al. Influence of calcium and magnesium carbonates on hydration kinetics, hydrate assemblage and microstructural development of metakaolin containing composite cements[J]. Cem Concr Res, 2018, 106(4): 91-102.
[108] [108] KOCABA V, GALLUCCI E, SCRIVENER K L. Methods for determination of degree of reaction of slag in blended cement pastes[J]. Cem Concr Res, 2012, 42(3): 511-525.
[109] [109] ADU-AMANKWAH S, ZAJAC M, STABLER C, et al. Influence of limestone on the hydration of ternary slag cements[J]. Cem Concr Res, 2017, 100(10): 96-109.
[110] [110] MYERS R J, LOTHENBACH B, BERNAL S A, et al. Thermodynamic modelling of alkali-activated slag cements[J]. Appl Geochem, 2015, 61(10): 233-247.
[111] [111] HAAS J, NONAT A. From C-S-H to C-A-S-H: Experimental study and thermodynamic modelling[J]. Cem Concr Res, 2015, 68(2): 124-138.
[112] [112] LOTHENBACH B, NONAT A. Calcium silicate hydrates: Solid and liquid phase composition[J]. Cem Concr Res, 2015, 78(12): 57-70.
[113] [113] MACHNER A, ZAJAC M, HAHA M B, et al. Limitations of the hydrotalcite formation in Portland composite cement pastes containing dolomite and metakaolin[J]. Cem Concr Res, 2018, 105(3): 1-17.
[114] [114] DESCHNER F, LOTHENBACH B, WINNEFELD F, et al. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash[J]. Cem Concr Res, 2013, 52(10): 169-181.
[115] [115] GALLUCCI E, ZHANG X, SCRIVENER K. Effect of temperature on the microstructure of calcium silicate hydrate (CSH)[J]. Cem Concr Res, 2013, 53(11): 185-195.
[116] [116] BAHAFID S, GHABEZLOO S, DUC M, et al. Effect of the hydration temperature on the microstructure of Class G cement: CSH composition and density[J]. Cem Concr Res, 2017, 95(5): 270-281.
[117] [117] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cem Concr Res, 2019, 115(1): 472-506.
[118] [118] LOTHENBACH B, WINNEFELD F. Thermodynamic modelling of the hydration of Portland cement[J]. Cem Concr Res, 2006, 36(2): 209-226.
[119] [119] MATSCHEI T, LOTHENBACH B, GLASSER F. The AFm phase in Portland cement[J]. Cem Concr Res, 2007, 37(2): 118-130.
[120] [120] LOTHENBACH B, DAMIDOT D, MATSCHEI T, et al. Thermodynamic modelling: state of knowledge and challenges[J]. Adv Cem Res, 2010, 22(4): 211-223.
[121] [121] KOENDERS E, VAN BREUGEL K. Numerical modelling of autogenous shrinkage of hardening cement paste[J]. Cem Concr Res, 1997, 27(10): 1489-1499.
[122] [122] YE G. Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials[D]. Delft: Delft University of Technology, 2003.
[123] [123] JENNINGS H M, JOHNSON S K. Simulation of microstructure development during the hydration of a cement compound[J]. J Am Ceram Soc, 1986, 69(11): 790-795.
[124] [124] THOMAS J J, BIERNACKI J J, BULLARD J W, et al. Modeling and simulation of cement hydration kinetics and microstructure development[J]. Cem Concr Res, 2011, 41(12): 1257-1278.
[125] [125] GALLUCCI E, SCRIVENER K. Crystallisation of calcium hydroxide in early age model and ordinary cementitious systems[J]. Cem Concr Res, 2007, 37(4): 492-501.
[126] [126] GAO P. Simulation of hydration and microstructure development of blended cements[D]. Delft: Delft University of Technology, 2018.
[127] [127] GARBOCZI E, BENTZ D. Computer simulation of the diffusivity of cement-based materials[J]. J Mater Sci, 1992, 27(8): 2083-2092.
[128] [128] BENTZ D P. Quantitative comparison of real and CEMHYD3D model microstructures using correlation functions[J]. Cem Concr Res, 2006, 36(2): 259-263.
[129] [129] LIU L, SHEN D, CHEN H, et al. Aggregate shape effect on the diffusivity of mortar: a 3D numerical investigation by random packing models of ellipsoidal particles and of convex polyhedral particles[J]. Comp Struct, 2014, 144(11): 40-51.
[130] [130] BULLARD J W, GARBOCZI E J. A model investigation of the influence of particle shape on portland cement hydration[J]. Cem Concr Res, 2006, 36(6): 1007-1015.
[131] [131] LIU C, HUANG R, ZHANG Y, et al. Modelling of irregular-shaped cement particles and microstructural development of Portland cement[J]. Constr Building Mater, 2018, 168(4): 362-378.
[132] [132] GARBOCZI E J, BULLARD J W. Shape analysis of a reference cement[J]. Cem Concr Res, 2004, 34(10): 1933-1937.
[133] [133] BENTZ D P, JENSEN O M, COATS A, et al. Influence of silica fume on diffusivity in cement-based materials: I. Experimental and computer modeling studies on cement pastes[J]. Cem Concr Res, 2000, 30(6): 953-962.
[134] [134] TORRENTS J, MASON T O, GARBOCZI E J. Impedance spectra of fiber-reinforced cement-based composites: a modeling approach[J]. Cem Concr Res, 2000, 30(4): 585-592.
[135] [135] SNYDER K A, BULLARD J W. Effect of continued hydration on the transport properties of cracks through Portland cement pastes in a saturated environment: A microstructural model study[R]. NISTIR 7265, Washington DC, 2005: 8-23.
[136] [136] HAECKER C J, GARBOCZI E, BULLARD J, et al. Modeling the linear elastic properties of Portland cement paste[J]. Cem Concr Res, 2005, 35(10): 1948-1960.
[137] [137] BENTZ D P, HAECKER C J. An argument for using coarse cements in high-performance concretes[J]. Cem Concr Res, 1999, 29(4): 615-618.
[138] [138] BENTZ D P, GARBOCZI E J, HAECKER C J, et al. Effects of cement particle size distribution on performance properties of Portland cement-based materials[J]. Cem Concr Res, 1999, 29(10): 1663-1671.
[139] [139] BENTZ D P, JENSEN O M, HANSEN K K, et al. Influence of cement particle-size distribution on early age autogenous strains and stresses in cement-based materials[J]. J Am Ceram Soc, 2001, 84(1): 129-135.
[140] [140] RICHARDSON J M, BIERNACKI J J, STUTZMAN P E, et al. Stoichiometry of slag hydration with calcium hydroxide[J]. J Am Ceram Soc, 2002, 85(4): 947-953.
[141] [141] BIERNACKI J, RICHARDSON J, STUTZMAN P, et al. Kinetics of slag hydration in the presence of calcium hydroxide[J]. J Am Ceram Soc, 2002, 85(9): 2261-2267.
[142] [142] BENTZ D P. A three-dimensional cement hydration and microstructure program: I. hydration rate, heat of hydration, and chemical shrinkage[M]. Gaithersburg: National Institute of Technology, 1995.
[143] [143] CHEN W, BROUWERS H. Mitigating the effects of system resolution on computer simulation of Portland cement hydration[J]. Cem Concr Comp, 2008, 30(9): 779-787.
[144] [144] BISHNOI S, SCRIVENER K L. ?ic: A new platform for modelling the hydration of cements[J]. Cem Concr Res, 2009, 39(4): 266-274.
[145] [145] DE SCHUTTER G, TAERWE L. General hydration model for Portland cement and blast furnace slag cement[J]. Cem Concr Res, 1995, 25(3): 593-604.
[146] [146] DE SCHUTTER G, TAERWE L. Degree of hydration-based description of mechanical properties of early age concrete[J]. Mater Struct, 1996, 29(6): 335-344.
[147] [147] DE SCHUTTER G, TAERWE L. Towards a more fundamental non-linear basic creep model for early age concrete[J]. Magaz Concr Res, 1997, 49(180): 195-200.
[148] [148] DE SCHUTTER G. Hydration and temperature development of concrete made with blast-furnace slag cement[J]. Cem Concr Res, 1999, 29(1): 143-149.
[149] [149] DE SCHUTTER G. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws[J]. Comp Struct, 2002, 80(27-30): 2035-2042.
[150] [150] POPPE A M, DE SCHUTTER G. Cement hydration in the presence of high filler contents[J]. Cem Concr Res, 2005, 35(12): 2290-2299.
[151] [151] PAPADAKIS V G. Experimental investigation and theoretical modeling of silica fume activity in concrete[J]. Cem Concr Res, 1999, 29(1): 79-86.
[152] [152] PAPADAKIS V G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress[J]. Cem Concr Res, 2000, 30(2): 291-299.
[153] [153] PAPADAKIS V G. Effect of fly ash on Portland cement systems: Part I. Low-calcium fly ash[J]. Cem Concr Res, 1999, 29(11): 1727-1736.
[154] [154] PAPADAKIS V G. Effect of fly ash on Portland cement systems: Part II. High-calcium fly ash[J]. Cem Concr Res, 2000, 30(10): 1647-54.
[155] [155] PAPADAKIS V G, VAYENAS C G, FARDIS M N. Physical and chemical characteristics affecting the durability of concrete[J]. Mater J, 1991, 88(2): 186-196.
[156] [156] WANG X Y, LEE H S. Modeling the hydration of concrete incorporating fly ash or slag[J]. Cem Concr Res, 2010, 40(7): 984-996.
[157] [157] WANG X Y, LEE H S, PARK K B, et al. A multi-phase kinetic model to simulate hydration of slag-cement blends[J]. Cem Concr Comp, 2010, 32(6): 468-477.
[158] [158] TOMOSAWA F, NOGUCHI T, HYEON C. Simulation model for temperature rise and evolution of thermal stress in concrete based on kinetic hydration model of cement[C]//10th international congress chemistry of cement, Sweden: 1997: 72-75.
[159] [159] MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance integrated material and structural mechanics[J]. J Adv Conc Technol, 2003, 1(2): 91-126.
[160] [160] MAEKAWA K. Multi-scale modeling of structural concrete[M]. Boca Raton: CRC Press, 2008.
[161] [161] MAEKAWA K, ISHIDA T. Modeling of structural performances under coupled environmental and weather actions[J]. Mater Struct, 2002, 35(10): 591-602.
[162] [162] MAEKAWA K, CHAUBE R, KISHI T. Modeling of Concrete Performance: Hydration, Microstructure Formation and Mass Transport[M]. London: Routledge, 1998.
[163] [163] WANG X Y, LUAN Y. Modeling of hydration, strength development, and optimum combinations of cement-slag-limestone ternary concrete[J]. Inter J Concr Struct Mater, 2018, 12(1): 1-13.
[164] [164] ISHIDA T, MAEKAWA K, KISHI T. Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history[J]. Cem Concr Res, 2007, 37(4): 565-78.
[166] [166] BOHá? M, NOVOTN? R. Rheological and calorimetric characterization of the role of CaCl2 on Portland cement early hydration[J]. Mater Sci Forum, 2016, 865: 17-21.
[167] [167] PANE I, HANSEN W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis[J]. Cem Concr Res, 2005, 35(6): 1155-1164.
[168] [168] DE ROJAS M S, FRíAS M. The pozzolanic activity of different materials, its influence on the hydration heat in mortars[J]. Cem Concr Res, 1996, 26(2): 203-213.
[169] [169] HAN F, ZHANG Z, WANG D, et al. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures[J]. Thermochim Acta, 2015, 605(4): 43-51.
[170] [170] ZHANG Y, SUN W, LIU S. Study on the hydration heat of binder paste in high-performance concrete[J]. Cem Concr Res, 2002, 32(9): 1483-1488.
[171] [171] KADRI E H, DUVAL R. Hydration heat kinetics of concrete with silica fume[J]. Constr Building Mater, 2009, 23(11): 3388-3392.
[172] [172] LANGAN B W, WENG K, WARD M A. Effect of silica fume and fly ash on heat of hydration of Portland cement[J]. Cem Concr Res, 2002, 32(7): 1045-1051.
[173] [173] MEHTA P K, MONTEIRO P J. Concrete: microstructure, properties, and materials[M]. New York: McGraw-Hill Education, 2014.
[174] [174] SUN Z, VOIGT T, SHAH S P. Rheometric and ultrasonic investigations of viscoelastic properties of fresh Portland cement pastes[J]. Cem Concr Res, 2006, 36(2): 278-287.
[175] [175] STEPISNIK J, LUKAC M, KOCUVAN I. Measurement of cement hydration by ultrasonics[J]. Ceram Bull, 1981, 60(4): 481.
[176] [176] ?ZTüRK T, RAPOPORT J, POPVICS J S, et al. Monitoring the setting and hardening of cement-based materials with ultrasound[J]. Concr Sci Eng, 1999, 1(2): 83-91.
[177] [177] VOIGT T, AKKAYA Y, SHAH S P. Determination of early age mortar and concrete strength by ultrasonic wave reflections[J]. J Mater Civil Eng, 2003, 15(3): 247-54.
[178] [178] ZHANG Y, KONG X, GAO L, et al. In-situ measurement of viscoelastic properties of fresh cement paste by a microrheology analyzer[J]. Cem Concr Res, 2016, 79(1): 291-300.
[180] [180] ZHOU J, YE G, VAN BREUGEL K. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP)[J]. Cem Concr Res, 2010, 40(7): 1120-1128.
[181] [181] LYU K, SHE W, MIAO C, et al. Quantitative characterization of pore morphology in hardened cement paste via SEM-BSE image analysis[J]. Constr Building Mater, 2019, 202(3): 589-602.
[182] [182] PENG Y, ZENG Q, XU S, et al. BSE-IA reveals retardation mechanisms of polymer powders on cement hydration[J]. J Am Ceram Soc, 2020, 103(5): 3373-3389.
[183] [183] MA Y, WANG G, YE G, et al. A comparative study on the pore structure of alkali-activated fly ash evaluated by mercury intrusion porosimetry, N 2 adsorption and image analysis[J]. J Mater Sci, 2018, 53(8): 5958-5972.
[184] [184] BéE M. Quasielastic neutron scattering[M]. Bristol: Adam Hilger, 1988.
[185] [185] FITZGERALD S A, THOMAS J J, NEUMANN D A, et al. A neutron scattering study of the role of diffusion in the hydration of tricalcium silicate[J]. Cem Concr Res, 2002, 32(3): 409-413.
[186] [186] BERLINER R, POPOVICI M, HERWIG K W, et al. Quasielastic neutron scattering study of the effect of water-to-cement ratio on the hydration kinetics of tricalcium silicate[J]. Cem Concr Res, 1998, 28(2): 231-243.
[187] [187] FURRER A, MESOT J, STR?SSLE T. Neutron Scattering in Condensed Matter Physics[M]. Singapore: WSPC, 2009.
[188] [188] BORDALLO H N, ALDRIDGE L P, DESMEDT A. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering[J]. J Phys Chem B, 2006, 110(36): 17966-17976.
[189] [189] HARRIS D H C, WINDSOR C G, LAWRENCE C D. Free and bound water in cement pastes[J]. Magz Concr Res, 1974, 26(87): 65-72.
[190] [190] FRATINI E, CHEN S H, BAGLIONI P, et al. Age-dependent dynamics of water in hydrated cement paste[J]. Phys Rev E Stat Nonlinear Soft Matter Phys, 2001, 64(1): 020201.
[191] [191] YI Z, DENG P N, ZHANG L L, et al. Dynamic behaviors of water contained in calcium-silicate-hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy[J]. Chin Phys B, 2016, 25(10): 271-278.
[192] [192] FITZGERALD S A, NEUMANN D A, RUSH J J, et al. In situ quasi-elastic neutron scattering study of the hydration of tricalcium silicate[J]. Chem Mater, 1998, 10(1): 397-402.
[193] [193] LIVINGSTON R A, NEUMANN D A, ALLEN A, et al. Application of neutron scattering methods to cementitious materials[J]. MrS Proceed, 1994, 376: 459.
[194] [194] SUN X, FARAONE A, Q.L. DAI, et al. A new approach of quantitatively analyzing water states by neutron scattering in hardened cement paste[J]. Mater Charact, 2018, 136(2): 134-143.
[195] [195] YI Z, ZHANG L L, LI H. Spectral analysis of water dynamics in cement paste by quasi-elastic neutron scattering[J]. Acta Phys Sin, 2015, 64(5): 328-334.
[196] [196] GUTBERLET T, HILBIG H, BEDDOE R E, et al. New insights into water bonding during early tricalcium silicate hydration with quasielastic neutron scattering[J]. Cem Concr Res, 2013, 51(51): 104-108.
[197] [197] VANESSA K. PETERSON, A. NEUMANN D, LIVINGSTON§ R A. Hydration of tricalcium and dicalcium silicate mixtures studied using quasielastic neutron scattering[J]. J Phys Chem B, 2005, 109(30): 14449-14453.
[198] [198] VANESSA K. PETERSON, A. NEUMANN D, LIVINGSTON§ R A. Interactions of hydrating tricalcium and dicalcium silicate using time-resolved quasielastic neutron scattering[J]. MrS Proc, 2004, 840: Q2.2.1-Q2.2.6.
[199] [199] LI H, CHIANG W S, FRATINI E, et al. Dynamic crossover in hydration water of curing cement paste: the effect of superplasticizer[J]. J Phys-Cond Matter, 2012, 24(6): 1-7.
[200] [200] LI H, FRATINI E, CHIANG W S, et al. Dynamic behavior of hydration water in calcium-silicate-hydrate gel: a quasielastic neutron scattering spectroscopy investigation[J]. Phys Rev E Statistical Nonlinear & Soft Matter Physics, 2012, 86(6): 061505.
[202] [202] LI H, ZHANG L L, YI Z, et al. Translational and rotational dynamics of water contained in aged Portland cement pastes studied by quasi-elastic neutron scattering[J]. J Colloid Inter Sci, 2015, 452(8): 1-7.
[203] [203] DENG P N, YI Z, ZHANG L L, et al. Analysis of the dynamics of water confined in hydrated calcium silica(C-S-H) based on the quasi-elastic neutron scattering spectra[J]. Acta Phys Sin, 2016, 65(10): 231-236.
[204] [204] LIU X H, DENG P N, LI H. Analysis of the dynamics of water confined in cement based on the quasi-elastic neutron scattering spectra[J]. Nucl Technol, 2019, 42(6): 60-68.
[205] [205] COHEN M H, MENDELSON K S. Nuclear magnetic relaxation and the internal geometry of sedimentary rocks[J]. J Appl Phys, 1982, 53(2): 1127-1135.
[206] [206] WOESSNER D E. NMR spin-echo self-diffusion measurements on fluids undergoing restricted diffusion[J]. J Phys Chem, 1963, 67(6): 1365-1367.
[207] [207] CALLAGHAN P T, COY A, MACGOWAN D, et al. Diffraction-like effects in NMR diffusion studies of fluids in porous solids[J]. Nature, 1991, 351(6326): 467-469.
[208] [208] HOLTHAUSEN R S, RAUPACH M. A phenomenological approach on the in?uence of paramagnetic iron in cement stone on 2D T1-T2 relaxation in single-sided 1H nuclear magnetic resonance[J]. Cem Concr Res, 2019, 120(6): 279-293.
[209] [209] JANSEN D, WOLF J J, FOBBE N. The hydration of nearly pure ye'elimite with a sulfate carrier in a stoichiometric ettringite binder system. Implications for the hydration process based on in-situ XRD, 1H-TD-NMR, pore solution analysis, and thermodynamic modeling[J]. Cem Concr Res, 2020, 127(1): 105923.
[210] [210] ECTORS D, GOETZ-NEUNHOEFFER F, HERGETH W D, et al. In situ 1H-TD-NMR: Quantification and microstructure development during the early hydration of alite and OPC[J]. Cem Concr Res, 2016, 79(1): 366-372.
[211] [211] VALORI A, MCDONALD P J, SCRIVENER K L. The morphology of C-S-H lessons from H-1 nuclear magnetic resonance relaxometry[J]. Cem Concr Res, 2013, 49(7): 65-81.
[212] [212] BROWNSTEIN K R, TARR C E. Importance of classical di?usion in Nmr-studies of water in biological cells[J]. Phys Rev A, 1979, 19(6): 2446-2453.
[213] [213] SENTURIA S D, ROBINSON J D. Nuclear spin-lattice relaxation of liquids confined in porous solids[J]. Soc Petr Eng J, 1970, 10(3): 237-244.
[214] [214] VALORI A, RODIN V, MCDONALD P J. On the interpretation of 1H 2-dimensional NMR relaxation exchange spectra in cements: Is there exchange between pores with two characteristic sizes or Fe3+ concentrations?[J]. Cem Concr Res, 2010, 40(9): 1375-1377.
[215] [215] NESTLE N. A simple semiempiric model for NMR relaxometry data of hydrating cement pastes[J]. Cem Concr Res, 2004, 34(3): 447-454.
[216] [216] SONG Y Q, VENKATARAMANAN L, BURCAW L. Determining the resolution of Laplace inversion spectrum[J]. J Chem Phys, 2005, 122(10): 104104.
[217] [217] SCHREINER L J, MACTAVISH J C, MILJKOVIC L, et al. NMR Line shape-spin-lattice relaxation correlation study of Portland cement hydration[J]. J Am Ceram Soc, 1985, 68(1): 10-16.
[218] [218] FAURE P, RODTS S. Proton NMR relaxation as a probe for setting cement pastes[J]. Mag Res Mag, 2008, 26(8): 1183-1196.
[219] [219] NESTLE N, ZIMMERMANN C, DAKKOURI M, et al. Transient high concentrations of chain anions in hydrating cement-indications from proton spin relaxation measurements[J]. J Phys D Appl Phys 2002, 35(2): 166-171.
[220] [220] TRITT-GOC J, PI?LEWSKI N, KO?CIELSKI S, et al. The influence of the superplasticizer on the hydration and freezing processes in white cement studied by 1H spin-lattice relaxation time and single point imaging[J]. Cem Concr Res, 2000, 30(6): 931-936.
[221] [221] RUMM R, HARANCZYK H, PEEMOELLER H, et al. Proton free induction decay evolution during hydration of white synthetic cement[J]. Cem Concr Res, 1991, 21(2/3): 391-393.
[222] [222] KUDRYAVTSEV A B, KOUZNETSOVA T V, LINERT W, et al. A study of the hydration of aluminate minerals based on the measurements of the mean and the variance of the proton magnetic resonance relaxation rate[J]. Chem Phys, 1997, 215(3): 419-427.
[223] [223] APIH T, LAHAJNAR G, SEPE A, et al. Proton spin-lattice relaxation study of the hydration of self-stressed expansive cement[J]. Cem Concr Res, 2001, 31(2): 263-269.
[224] [224] SHE A, YAO W. In-situ monitoring of hydration kinetics of cement pastes by low-field NMR[J]. J Wuhan Univ Technol, 2010, 25(4): 692-695.
[225] [225] ZHAO H, WAN Y, XIE J, et al. Effects of Nano-SiO2 and SAP on Hydration Process of Early-Age Cement Paste Using LF-NMR[J]. Adv Mater Sci Eng, 2020, 2020(3): 1-9.
[226] [226] ZHAO H, SUN G, YU L, et al. Hydration of early age cement paste with nano-CaCO3 and SAP by LF-NMR spectroscopy: mechanism and prediction[J]. Mod Sim Engg, 2019, 2019(3): 1-10.
[227] [227] SHE A, YAO W. Research on hydration of cement at early age by proton NMR[J]. J Building Mater, 2010, 13(3): 376-379.
[228] [228] LI X, LIN B, ZHAI C, et al. Relaxation study of cement based grouting material using nuclear magnetic resonance[J]. Inter J Min Sc Technol, 2012, 22(6): 821-824.
[229] [229] WALLING S A, PROVIS J L. Magnesia-based cements: a journey of 150 years, and cements for the future?[J]. Chem Rev, 2016, 116(7): 4170-4204.
[230] [230] MARTINI F, BORSACCHI S, GEPPI M, et al. Monitoring the hydration of MgO-based cement and its mixtures with Portland cement by 1 H NMR relaxometry[J]. Micr Mes Mater, 2018, 269(10): 26-30.
[231] [231] PIPILIKAKI P, KATSIOTI M. Study of the hydration process of quaternary blended cements and durability of the produced mortars and concretes[J]. Constr Building Mater, 2009, 23(6): 2246-2250.
[232] [232] GUSSONI M, GRECO F, BONAZZI F, et al. 1H NMR spin-spin relaxation and imaging in porous systems: an application to the morphological study of white portland cement during hydration in the presence of organics[J]. Mag Res Imag, 2004, 22(6): 877-889.
[233] [233] SCRIVENER K L, JUILLAND P, MONTEIRO P J M. Advances in understanding hydration of Portland cement[J]. Cem Concr Res, 2015, 78(12): 38-56.
[234] [234] WANG Y R, CAO Y B, ZHANG P, et al. Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze-thaw cycles[J]. Constr Build Mater, 2019, 209(6): 566-576.
[235] [235] BAO J W, LI S G, ZHANG P, et al. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete[J]. Constr Build Mater, 2020, 239(4): 117845.
[236] [236] ZHANG P, WITTMANN F H, VOGEL M, et al. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J]. Cem Concr Res, 2017, 100(10): 60-67.
[237] [237] ZHANG P, WITTMANN F H, LURA P, et al. Application of neutron imaging to investigate fundamental aspects of durability of cement-based materials: A review[J]. Cem Concr Res, 2018, 108(6): 152-166.
[238] [238] LE P S, E. FRATINI, CHEN S H. Hydration-dependent dynamics of water in calcium-silicate-hydrate: A QENS study by global model[J]. Colloids Surf B Bioint, 2018, 168(8): 187-192.
[239] [239] LE P S, FRATINI E, ZHANG L, et al. Quasi-elastic neutron scattering study of hydration water in synthetic cement: an improved analysis method based on a new global model[J]. J Phys Chem C, 2017, 121(23): 12826-12833.
[240] [240] MCDONALD P J, RODIN V, VALORI A. Characterisation of intra- and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content[J]. Cem Concr Res, 2010, 40(12): 1656-1663.
[241] [241] BOHRIS A J, GOERKE U, MCDONALD P J, et al. A broad line NMR and MRI study of water and water transport in Portland cement pastes[J]. Mag Res Imag, 1998, 16(5-6): 455-461.
[242] [242] BORTOLOTTI V, FANTAZZINI P, MONGIORGI R, et al. Hydration kinetics of cements by time-domain nuclear magnetic resonance: application to portland-cement-derived endodontic pastes[J]. Cem Concr Res, 2012, 42(3): 577-582.
[243] [243] HOLLY R, REARDON E J, HANSSON C M, et al. Proton spin-spin relaxation study of the effect of temperature on white cement hydration[J]. J Am Ceram Soc, 2007, 90(2): 570-577.
[244] [244] RODIN V, VALORI A, MCDONALD P J. A 1H double-quantum- filtered NMR study of water in cement pastes[J]. New J Phys, 2011, 13(3): 035017.
[245] [245] WEBER S, REINHARDT H W. A new generation of high performance concrete: concrete with autogenous curing[J]. Adv Ment Based Mater, 1997, 6(2): 59-68.
[246] [246] KOVLER K, SOUSLIKOV A, BENTUR A. Pre-soaked lightweight aggregates as additives for internal curing of high-strength concretes[J]. Cem Concr Aggr, 2004, 26(2): 1-8.
[247] [247] NESTLE N, KüHN A, FRIEDEMANN K, et al. Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR[J]. Micr Mes Mater, 2009, 125(1-2): 51-57.
[248] [248] FRIEDEMANN K, STALLMACH F, K?RGER J. NMR diffusion and relaxation studies during cement hydration—A non-destructive approach for clarification of the mechanism of internal post curing of cementitious materials[J]. Cem Concr Res, 2006, 36(5): 817-826.
[249] [249] FRIEDEMANN K, SCHNFELDER W, STALLMACH F, et al. NMR relaxometry during internal curing of Portland cements by lightweight aggregates[J]. Mater Struct, 2008, 41(12): 1647-1655.
[250] [250] MARUYAMA I, KANEMATSU M, NOGUCHI T, et al. Evaluation of water transfer from saturated lightweight aggregate to cement paste matrix by neutron radiography[J]. Nucl Instr Methods Phys Res, 2009, 605(1): 159-162.
[251] [251] FOURMENTIN M, FAURE P, RODTS S, et al. NMR observation of water transfer between a cement paste and a porous medium[J]. Cem Concr Res, 2017, 95(5): 56-64.
[252] [252] HUANG H, YE G, PEL L. New insights into autogenous self-healing in cement paste based on nuclear magnetic resonance (NMR) tests[J]. Mater Str, 2016, 49(7): 2509-2524.
[253] [253] FAURE P, CARé S, PO C, et al. An MRI-SPI and NMR relaxation study of drying-hydration coupling effect on microstructure of cement-based materials at early age[J]. Mag Res Imag, 2005, 23(2): 311-314.
[254] [254] FAURE P, CARE S, MAGAT J, et al. Drying effect on cement paste porosity at early age observed by NMR methods[J]. Constr Build Mater, 2012, 29(4): 496-503.
[255] [255] GAJEWICZ A M, GARTNER E, KANG K, et al. A 1H NMR relaxometry investigation of gel-pore drying shrinkage in cement pastes[J]. Cem Concr Res, 2016, 86(8): 12-19.
[256] [256] MARUYAMA I, OHKUBO T, HAJI T, et al. Dynamic microstructural evolution of hardened cement paste during first drying monitored by 1 H NMR relaxometry[J]. Cem Concr Res, 2019, 122(8): 107-117.
[257] [257] GAJEWICZ-JAROMIN A M, MCDONALD P J, MULLER A C A, et al. Influence of curing temperature on cement paste microstructure measured by 1 H NMR relaxometry[J]. Cem Concr Res, 2019, 122(8): 147-156.
[258] [258] FISCHER N, HAERDTL R, MCDONALD P J. Observation of the redistribution of nanoscale water filled porosity in cement based materials during wetting[J]. Cem Concr Res, 2015, 68(2): 148-155.
[259] [259] MCDONALD P J, ISTOK O, JANOTA M, et al. Sorption, anomalous water transport and dynamic porosity in cement paste: A spatially localised 1 H NMR relaxation study and a proposed mechanism[J]. Cem Concr Res, 2020, 133(6): 106045.
[260] [260] WYRZYKOWSKI M, MCDONALD P J, SCRIVENER K, et al. Water redistribution within the microstructure of cementitious materials due to temperature changes studied with 1H NMR[J]. J Phys Chem C, 2017, 121(50): 27950-27962.
[261] [261] WYRZYKOWSKI M, GAJEWICZ-JAROMIN A M, MCDONALD P J, et al. Water redistribution- microdiffusion in cement paste under mechanical loading evidenced by 1H NMR[J]. J Phys Chem C, 2019, 123(26): 16153?16163.
[262] [262] WYRZYKOWSKI M, LURA P. The effect of external load on internal relative humidity in concrete[J]. Cem Concr Res, 2014, 65(11): 58-63.
[263] [263] WYRZYKOWSKI M, LURA P. RH Dependence upon Applied Load: Experimental Study on Water Redistribution in the Microstructure at Loading[C]//10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, Vienna: 2015: 339-347.
[264] [264] MCDONALD P J, KORB J P, MITCHELL J, et al. Surface relaxation and chemical exchange in hydrating cement pastes: A two-dimensional NMR relaxation study[J]. Phys Rev E Stat Nonl Soft Matter Phys, 2005, 72(1): 011409.
[265] [265] KOWALCZYK R, GAJEWICZ A, MCDONALD P. The mechanism of water-isopropanol exchange in cement pastes evidenced by NMR relaxometry[J]. Rsc Adv, 2014, 4(40): 20709-20715.
[266] [266] MCDONALD P J, MITCHELL J, MULHERON M, et al. Two-dimensional correlation relaxometry studies of cement pastes performed using a new one-sided NMR magnet[J]. Cem Concr Res, 2007, 37(3): 303-309.
[267] [267] MITCHELL J, GRIFFITH J D, COLLINS J H P, et al. Validation of NMR relaxation exchange time measurements in porous media[J]. J Chem Phys, 2007, 127(23): 234701.
[268] [268] LEE J H, LABADIE C, SPRINGER C S, et al. Two-dimensional inverse Laplace transform NMR: altered relaxation times allow detection of exchange correlation[J]. J Am Chem Soc, 1993, 115(17): 7761-7764.
[269] [269] MONTEILHET L, KORB J P, MITCHELL J, et al. Observation of exchange of micropore water in cement pastes by two-dimensional T2-T2 nuclear magnetic resonance relaxometry[J]. Phys Rev E, 2006, 74(6): 061404.
[270] [270] D’ORAZIO F, BHATTACHARJA S, HALPERIN W P, et al. Molecular diffusion and nuclear-magnetic-resonance relaxation of water in unsaturated porous silica glass[J]. Phys Rev B Condens Matter, 1990, 42(16): 9810-9818.
[271] [271] CARé S. Influence of aggregates on chloride diffusion coefficient into mortar[J]. Cem Concr Res, 2003, 33(7): 1021-1028.
[272] [272] BEDE A, SCURTU A, ARDELEAN I. NMR relaxation of molecules confined inside the cement paste pores under partially saturated conditions[J]. Cem Concr Res, 2016, 89(11): 56-62.
[273] [273] VALCKENBORG R M E, PEL L, KOPINGA K. Combined NMR cryoporometry and relaxometry[J]. J Phys D: Appl Phys, 2002, 35(3): 249-256.
[274] [274] MITCHELL J, WEBBER J B W, STRANGE J H. Nuclear magnetic resonance cryoporometry[J]. Phys Rep, 2008, 461(1): 1-36.
[275] [275] HOLLY R, TRITT-GOC J, PISLEWSKI N, et al. Magnetic resonance microimaging of pore freezing in cement: Effect of corrosion inhibitor[J]. J Appl Phys, 2000, 88(12): 7339-7345.
[276] [276] PETROV O V, FURó I. A joint use of melting and freezing data in NMR cryoporometry[J]. Micr Mes Mater, 2010, 136(1-3): 83-91.
[277] [277] OHKUBO T, IBARAKI M, TACHI Y, et al. Pore distribution of water-saturated compacted clay using NMR relaxometry and freezing temperature depression; effects of density and salt concentration[J]. Appl Clay Sci, 2016, 123(4): 148-155.
[278] [278] ZINGG A, HOLZER L, KAECH A, et al. The microstructure of dispersed and non-dispersed fresh cement pastes — New insight by cryo-microscopy[J]. Cem Concr Res, 2008, 38(4): 522-529.
[279] [279] POP A, ARDELEAN I. Monitoring the size evolution of capillary pores in cement paste during the early hydration via diffusion in internal gradients[J]. Cem Concr Res, 2015, 77(11): 76-81.
[280] [280] ZHOU B, KOMULAINEN S, VAARA J, et al. Characterization of pore structures of hydrated cements and natural shales by Xe-129 NMR spectroscopy[J]. Micr Mes Mater, 2017, 253(11): 49-54.
[281] [281] JAVED M A, KOMULAINEN S, DAIGLE H, et al. Determination of pore structures and dynamics of fluids in hydrated cements and natural shales by various 1H and 129Xe NMR methods[J]. Micropr Mesopor Mater, 2019, 281(6): 66-74.
[282] [282] A C P, B J P K, B D P, et al. Structure-texture correlation in ultra-high-performance concrete: A nuclear magnetic resonance study[J]. Cem Concr Res, 2002, 32(1): 97-101.
[283] [283] JI Y, SUN Z, JIANG X, et al. Fractal characterization on pore structure and analysis of fluidity and bleeding of fresh cement paste based on 1H low-field NMR[J]. Constr Build Mater, 2017, 140(6): 445-453.
[284] [284] PORTENEUVE C, KORB J P, D.PETIT, et al. Structure-texture correlation in ultra-high-performance concrete A nuclear magnetic resonance study[J]. Cem Concr Res, 2002, 32(1): 97-101.
[285] [285] PLASSAIS A, POMIèS M P, LEQUEUX N, et al. Microstructure evolution of hydrated cement pastes[J]. Phys Rev E Stat Non Soft Matter Phys, 2005, 72(4): 041401.
[286] [286] BOGNER A, LINK J, BAUM M, et al. Early hydration and microstructure formation of Portland cement paste studied by oscillation rheology, isothermal calorimetry, 1H NMR relaxometry, conductance and SAXS[J]. Cem Concr Res, 2020, 130(8): 105977.
[287] [287] H?U?LER F, TRITTHART J, AMENITSCH H, et al. Time-resolved combined SAXS and WAXS studies on hydrating tricalcium silicate and cement[J]. Adv Cem Res, 2009, 21(3): 101-111.
[288] [288] SONG Y Q, ZIELINKSI L, RYU S. Two-dimensional NMR of di?usion systems[J]. Phys Rev Letters, 2008, 100(24): 248002.
[289] [289] ANAND V, HIRASAKI G J, FLEURY M. NMR diffusional coupling: effects of temperature and clay distribution1[J]. Petrophysics, 2008, 49(4): 362.
[290] [290] FLEURY M, SOUALEM J. Quantitative analysis of diffusional pore coupling from T2-store-T2 NMR experiments[J]. J Colloid Interf Sci, 2009, 336(1): 250-259.
[291] [291] GRUNEWALD E, KNIGHT R. A laboratory study of NMR relaxation times and pore coupling in heterogeneous media[J]. Geophysics, 2011, 76(76): 73-83.
[292] [292] NESTLE N. NMR relaxometry study of cement hydration in the presence of different oxidic fine fraction materials[J]. Solid State Nucl Magc Res, 2004, 25(1): 80-83.
[293] [293] FAURE P F, STéPHANE R. Proton NMR relaxation as a probe for setting cement pastes[J]. Mag Res Imag, 2008, 26(8): 1183-1196.
[294] [294] ZHOU C, REN F, ZENG Q, et al. Pore-size resolved water vapor adsorption kinetics of white cement mortars as viewed from proton NMR relaxation[J]. Cem Concr Res, 2018, 105(3): 31-43.
[295] [295] EDELMANN M, ZIBOLD T, GRUNEWALD J. Generalised NMR-moisture correlation function of building materials based on a capillary bundle model[J]. Cem Concr Res, 2019, 119(5): 126-131.
[296] [296] BYTCHENKO? D, RODTS S. Structure of the two-dimensional relaxation spectra seen within the eigenmode perturbation theory and the two-site exchange model[J]. J Mag Res, 2011, 208(1): 4-19.
[297] [297] SONG Y Q, CARNEISO G, SCHWARTZ L M, et al. Experimental identifcation of di?usive coupling using 2D NMR[J]. Phys Rev Lett, 2014, 113(23): 235503.
Get Citation
Copy Citation Text
ZHAO Kaiyue, ZHANG Peng, KONG Xiangming, LI Haoxin, ZHAO Haito, ZHOU Chunsheng. Recent Progress on Portland Cement Hydration Kinetic Models and Experimental Methods[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1728
Category:
Received: Oct. 11, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: ZHAO Kaiyue (applezkyzhao@163.com)
CSTR:32186.14.