Optics and Precision Engineering, Volume. 33, Issue 4, 532(2025)
Absolute linear displacement measurement system based on spherical light projection imaging
[1] YU H, JIA X D, WAN Q H et al. High-resolution angular displacement technology based on varying moiré figure phase positions[J]. IEEE Sensors Journal, 19, 2126-2132(2019).
[2] EVANS C J. Precision engineering: an evolutionary perspective[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 370, 3835-3851(2012).
[3] YU H Y, CHEN X L, LIU C J et al. A survey on the grating based optical position encoder[J]. Optics & Laser Technology, 143, 107352(2021).
[4] ZHAO C H, WAN Q H, LIANG L H. Compensation for dynamic subdivision error when the grating displacement sensor code disk is stained[J]. IEEE Sensors Journal, 23, 2403-2410(2023).
[5] VAN DE VEN O S, VOGEL J G, XIA S et al. Self-aligning and self-calibrating capacitive sensor system for displacement measurement in inaccessible industrial environments[J]. IEEE Transactions on Instrumentation and Measurement, 67, 350-358(2017).
[6] LEE S C, PETERS R D. Nanoposition sensors with superior linear response to position and unlimited travel ranges[J]. Review of Scientific Instruments, 80(2009).
[7] HOANG H V, JEON J W. An efficient approach to correct the signals and generate high-resolution quadrature pulses for magnetic encoders[J]. IEEE Transactions on Industrial Electronics, 58, 3634-3646(2011).
[8] 杨继森, 修府, 张静. 多频磁场耦合的绝对式平面二维时栅位移传感器[J]. 光学 精密工程, 32, 3026-3046(2024).
YANG J S, XIU F, ZHANG J et al. Absolute planar two-dimensional time-grating displacement sensor with multi-frequency magnetic field coupling[J]. Opt. Precision Eng., 32, 3026-3046(2024).
[9] 李星辉, 崔璨. 光栅干涉精密纳米测量技术[J]. 光学 精密工程, 32, 2591-2611(2024).
LI X H, CUI C. Grating interferometric precision nanometric measurement technology[J]. Opt. Precision Eng., 32, 2591-2611(2024).
[10] NGUYEN T H, NGUYEN H X, TRAN T N et al. An effective method to improve the accuracy of a vernier-type absolute magnetic encoder[J]. IEEE Transactions on Industrial Electronics, 68, 7330-7340(2021).
[11] YU H, WAN Q H, ZHAO C H. Stain-detection and anti-stain algorithms based on dual detector data interchange in image-type displacement measurement technology[J]. IEEE Transactions on Instrumentation and Measurement, 72, 5012209(2023).
[12] TRESANCHEZ M, PALLEJÀ T, TEIXIDÓ M et al. Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder[J]. Sensors and Actuators A: Physical, 157, 161-167(2010).
[13] KIM J A, KIM J W, KANG C S et al. Absolute angle measurement using a phase-encoded binary graduated disk[J]. Measurement, 80, 288-293(2016).
[14] 于海, 万秋华, 孙莹. 一种自适应安装的高精度图像式角位移测量装置[J]. 中国光学, 13, 510(2020).
YU H, WAN Q H, SUN Y et al. A high precision image angular displacement measurement device with self-adaptive installation[J]. Chinese Optics, 13, 510(2020).
[15] SHI Y P, NI K, LI X H et al. Highly accurate, absolute optical encoder using a hybrid-positioning method[J]. Optics Letters, 44, 5258-5261(2019).
[16] QI J, GONG M M, XIE K Y et al. Single-detecting-path high-resolution displacement sensor based onself-interference effect of a single submicrometer grating[J]. Applied Optics, 60, 7518-7522(2021).
[17] GAO X, ZHANG X B, LI K W et al. Image signal denoising method of grating linear displacement sensor based on NLM[J]. Measurement, 203, 111965(2022).
[18] SARKAR T S. A new method of linear displacement measurement utilizing grayscale image[J]. International Journal of Electronics and Electrical Engineering, 1, 176-181(2013).
[19] WANG H, WANG J, CHEN B et al. Absolute optical imaging position encoder[J]. Measurement, 67, 42-50(2015).
[20] CAI N, XIE W, PENG H X et al. A novel error compensation method for an absolute optical encoder based on empirical mode decomposition[J]. Mechanical Systems and Signal Processing, 88, 81-88(2017).
[21] NING Z, CAI N, ZHAO J B et al. Error compensation for optical encoder based on variational mode decomposition with a coarse-to-fine selection scheme[J]. IEEE Transactions on Instrumentation and Measurement, 72, 1001510(2023).
[22] LASHMANOV O U, VASILEV A S, VASILEVA A V et al. High-precision absolute linear encoder based on a standard calibrated scale[J]. Measurement, 123, 226-234(2018).
[23] 刘雪玲, 胡金春, 佟浩. 基于图像灰度信息的直线位移测量[J]. 光学学报, 39(2019).
LIU X L, HU J C, TONG H et al. Linear displacement measurement based on image grayscale information[J]. Acta Optica Sinica, 39(2019).
[24] FU S W, CHENG F, TJAHJOWIDODO T et al. Development of an image grating sensor for position measurement[J]. Sensors, 19, 4986(2019).
[25] CHENG F, ZHOU D F, YU Q et al. A new image grating sensor for linear displacement measurement and its error analysis[J]. Sensors, 22, 4361(2022).
[26] YU H, WAN Q H, MU Z Y et al. Novel nano-scale absolute linear displacement measurement based on grating projection imaging[J]. Measurement, 182, 109738(2021).
[27] YU H, WAN Q H, LU X R et al. High-precision displacement measurement algorithm based on a depth fusion of grating projection pattern[J]. Applied Optics, 61, 1049(2022).
[28] YU H, WAN Q H, ZHAO C H. A novel self-correction method for linear displacement measurement based on 2-D synthesis mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 71, 7007608(2022).
[29] YU H, WAN Q H, LIANG L H et al. Error analysis and compensation method of displacement measurements based on reflection projection imaging[J]. Optics and Lasers in Engineering, 161, 107401(2023).
[30] YU H, WAN Q H, ZHAO Z C et al. Thin-volume image-type angular displacement measurement based on point light reflection[J]. IEEE Transactions on Instrumentation and Measurement, 73, 4507507(2024).
Get Citation
Copy Citation Text
Zhicai ZHAO, Hai YU, Qiuhua WAN, Lihui LIANG, Hongxin ZHANG, Qifeng ZENG. Absolute linear displacement measurement system based on spherical light projection imaging[J]. Optics and Precision Engineering, 2025, 33(4): 532
Category:
Received: Oct. 14, 2024
Accepted: --
Published Online: May. 20, 2025
The Author Email: Hai YU (yuhai@ciomp.ac.cn)