Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2207002(2021)

Hand Gesture Recognition Using Ultra-Wideband Radar with Random Forest

Yao Li*, Xin Wang, Wentao He, and Baodai Shi
Author Affiliations
  • Tracking Guidance Teaching and Research Section, Air Defense and Missile Defense College, Air Force Engineering University, Xi’an, Shaanxi 710051, China
  • show less
    Figures & Tables(14)
    Flow chart of echo signal processing
    Comparison of time domain and frequency domain among different gestures. (a) Gesture 1; (b) gesture 2; (c) gesture 3; (d) gesture 4
    Flowchart of system working
    Feature map clustering analysis
    Clustering results for different K values. (a) Original image; (b) K=2; (c) K =4; (d) K =8
    Visualization of clustering results
    Random forest visualization
    Contribution rate of some features
    SNR of maps with different channel numbers
    • Table 1. Comparison of recognition accuracy for different number of accumulated echo pulses

      View table

      Table 1. Comparison of recognition accuracy for different number of accumulated echo pulses

      Number of accumulated echo pulses4896128256
      Average accuracy of classification /%67.2381.4698.6799.97
    • Table 2. Comparison of accuracy for different feature maps

      View table

      Table 2. Comparison of accuracy for different feature maps

      Type of feature mapAverage accuracy of classification /%
      RGB map98.67
      R channel map77.98
      G channel map81.25
      B channel map78.25
      Gray-scale map83.54
    • Table 3. Results of classification for different parameter settings of random forest

      View table

      Table 3. Results of classification for different parameter settings of random forest

      Type of inputCART numberMaximum number of featuresAverage accuracy of classification /%
      RDM50679.26
      1285.32
      2086.17
      100687.34
      1298.67
      2099.12
      200686.54
      1297.12
      2098.31
    • Table 4. Setting of parameters in gesture recognition algorithm

      View table

      Table 4. Setting of parameters in gesture recognition algorithm

      ParameterSetting
      Number of transmitting antennas1
      Number of receiving antennas1
      Number of integrated radar pulses128
      RDM frame duration /ms14
      Number of sampling points8000
      Type of inputRDM
      Size of input512×512×3
      CART number100
      Maximum number of features12
      Number of gesture classes6
    • Table 5. Comparison of proposed algorithm with other algorithms

      View table

      Table 5. Comparison of proposed algorithm with other algorithms

      AlgorithmTraining time /hRecognition speed /(frame·s-1)Accuracy /%
      ShuffleNet V24.464190.64
      Mobilenet V24.524291.53
      VGG 164.214686.63
      Algorithm proposed in this article2.614198.93
    Tools

    Get Citation

    Copy Citation Text

    Yao Li, Xin Wang, Wentao He, Baodai Shi. Hand Gesture Recognition Using Ultra-Wideband Radar with Random Forest[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2207002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fourier Optics and Signal Processing

    Received: Apr. 15, 2021

    Accepted: Jul. 5, 2021

    Published Online: Oct. 29, 2021

    The Author Email: Yao Li (liyao_kaye@outlook.com)

    DOI:10.3788/LOP202158.2207002

    Topics