Journal of Inorganic Materials, Volume. 39, Issue 11, 1283(2024)

Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics

Yuting MENG, Xuemei WANG, Shuxian ZHANG, Zhiwei CHEN*, and Yanzhong PEI*
Author Affiliations
  • Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • show less
    References(56)

    [1] GOLDSMID H J[M]. Applications of thermoelectricity, 1-7(1960).

    [2] SNYDER G J. Thermoelectric power generation: efficiency and compatibility//ROWE D M. Thermoelectrics handbook: macro to nano[J]. Boca Raton: CRC/Taylor & Francis(2006).

    [5] MAO J, CHEN G, REN Z. Thermoelectric cooling materials[J]. Nature Materials, 454(2020).

    [6] PLATZEK D, KARPINSKI G, DRASAR C et al. Seebeck scanning microprobe for thermoelectric FGM[J]. Materials Science Forum, 587(2005).

    [9] CHEN Z, ZHANG X, PEI Y. Manipulation of phonon transport in thermoelectrics[J]. Advanced Materials, e1705617(2018).

    [10] PEI Y, WANG H, SNYDER G J. Band engineering of thermoelectric materials[J]. Advanced Materials, 6125(2012).

    [11] LI W, CHEN Z, LIN S et al. Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys[J]. Journal of Materiomics, 307(2015).

    [12] PEI Y, LALONDE A D, WANG H et al. Low effective mass leading to high thermoelectric performance[J]. Energy & Environmental Science, 7963(2012).

    [13] HE R, SCHIERNING G, NIELSCH K. Thermoelectric devices: a review of devices, architectures, and contact optimization[J]. Advanced Materials Technologies, 1700256(2018).

    [14] SHARMA S, DWIVEDI V K, PANDIT S N. A review of thermoelectric devices for cooling applications[J]. International Journal of Green Energy, 899(2014).

    [15] PEI J, CAI B W, ZHUANG H L et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges[J]. National Science Review, 1856(2020).

    [16] HONG M, CHEN Z G, ZIOU J. Fundamental and progress of Bi2Te3-based thermoelectric materials[J]. Chinese Physics B, 048403(2018).

    [17] HU L P, ZHU T J, LIU X H et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J]. Advanced Functional Materials, 5211(2014).

    [18] AHMAD S, SINGH A, BOHRA A et al. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions[J]. Nano Energy, 282(2016).

    [19] ZHU G H, LEE H, LAN Y C et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium[J]. Physical Review Letters, 196803(2009).

    [20] CHEN Z W, ZHANG X Y, REN J et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping[J]. Nature Communications, 3837(2021).

    [21] TANG C, HUANG Z, PEI J et al. Bi2Te3 single crystals with high room-temperature thermoelectric performance enhanced by manipulating point defects based on first-principles calculation[J]. RSC Advance, 14422(2019).

    [22] SATTERTHWAITE C B, URE R W. Electrical and thermal properties of Bi2Te3[J]. Physical Review, 1164(1957).

    [23] ZHANG Q, FANG T, LIU F et al. Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering[J]. Chemistry - An Asian Journal, 2775(2020).

    [24] WITTING I T, CHASAPIS T C, RICCI F et al. The thermoelectric properties of bismuth telluride[J]. Advanced Electronic Materials, 1800904(2019).

    [25] KIM H S, HEINZ N A, GIBBS Z M et al. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control[J]. Materials Today, 452(2017).

    [26] MADAR N, GIVON T, MOGILYANSKY D et al. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases[J]. Journal of Applied Physics, 035102(2016).

    [27] GREENAWAY D L, HARBEKE G. Band structure of bismuth telluride, bismuth selenide and their respective alloys[J]. Journal of Physics and Chemistry of Solids, 1585(1965).

    [28] ZHU T, HU L, ZHAO X et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials[J]. Advanced Science, 1600004(2016).

    [29] ZHU B, LIU X X, WANG Q et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy & Environmental Science, 2106(2020).

    [30] KIM S I, LEE K H, MUN H A et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 109(2015).

    [32] QIN C, JIN M, ZHANG R L et al. Preparation and thermoelectric properties of ZnTe-doped Bi0.5Sb1.5Te3 single crystal[J]. Mateials Letters, 129619(2021).

    [33] GOLDSMID H J[M]. Introduction to thermoelectricity, 7-21(2009).

    [34] MAY A F, SNYDER G J. Introduction to modeling thermoelectric transport at high temperatures[M]. ROWE D W. Materials, preparation, and characterization in thermoelectrics(2012).

    [35] KIM M, KIM S I, KIM S W et al. Weighted mobility ratio engineering for high-performance Bi-Te-based thermoelectric materials via suppression of minority carrier transport[J]. Advanced Materials, 2005931(2021).

    [36] GOLDSMID H J[M]. Thermoelectric refrigeration(1964).

    [38] DOS SANTOS C A M, DE CAMPOS A, DA LUZ M S et al. Procedure for measuring electrical resistivity of anisotropic materials: a revision of the Montgomery method[J]. Journal of Applied Physics, 083703(2011).

    [39] LEVY M, SARACHIK M P. Measurement of the Hall coefficient using van der Pauw method without magnetic field reversal[J]. Review of Scientific Instruments, 1342(1989).

    [40] PLECHÁČEK T, NAVRÁTIL J, HORÁK J et al. Defect structure of Pb-doped Bi2Te3 single crystals[J]. Philosophical Magazine, 2217(2004).

    [41] NAVRATIL J, LOSTAK P, HORAK J. Transport coefficient of gallium-doped Bi2Te3 single-crystals[J]. Crystal Reserch and Technology, 675(1991).

    [42] ZHANG Q, ZHAI R S, FANG T et al. Low-cost p-type Bi2Te2.7Se0.3 zone-melted thermoelectric materials for solid-state refrigeration[J]. Journal of Alloys and Compounds, 154732(2020).

    [43] BIRKHOLZ U. Untersuchung der intermetallischen Verbindung Bi2Te3 sowie der festen Lösungen Bi2-xSbxTe3 und Bi2Te3-xSex hinsichtlich ihrer Eignung als Material für Halbleiter-Thermoelemente[J]. Zeitschrift für Naturforschung A, 780(1958).

    [44] HU L, WU H, ZHU T et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride- based solid solutions[J]. Advanced Energy Materials, 1500411(2015).

    [45] XIONG C L, SHI F F, WANG H X et al. Achieving high thermoelectric performance of n-type Bi2Te2.79Se0.21 sintered materials by hot-stacked deformation[J]. ACS Applied Materials & Interfaces, 15429(2021).

    [46] WU G, TAN X J, YUAN M H et al. High thermoelectric and mechanical performance in strong-textured n-type Bi2Te2.7Se0.3 by temperature gradient method[J]. Chemical Engineering Journal, 144085(2023).

    [47] WANG S Y, TAN G J, XIE W J et al. Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation[J]. Journal of Materials Chemistry, 20943(2012).

    [48] HUANG W J, TAN X J, CAI J F et al. Synergistic effects improve thermoelectric properties of zone-melted n-type Bi2Te2.7Se0.3[J]. Materials Today Physics, 101022(2023).

    [49] JARIWALA B, SHAH D, RAVINDRA N M. Transport property measurements in doped Bi2Te3 single crystals obtained via zone melting method[J]. Journal of Electronic Materials, 1509(2015).

    [50] LI L, WEI P, YANG M J et al. Strengthened interlayer interaction and improved room-temperature thermoelectric performance of Ag-doped n-type Bi2Te2.7Se0.3[J]. Science China Materials, 3651(2023).

    [51] KIM J H, CHO H, BACK S Y et al. Lattice distortion and anisotropic thermoelectric properties in hot-deformed CuI-doped Bi2Te2.7Se0.3[J]. Journal of Alloys and Compounds, 152649(2020).

    [52] LEE G E, KIM I H, LIM Y S et al. Preparation and thermoelectric properties of iodine-doped Bi2Te2.7Se0.3 solid solutions[J]. Journal of the Korean Physical Society, 696(2014).

    [53] LIU W S, ZHANG Q Y, LAN Y C et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites[J]. Advanced Energy Materials, 577(2011).

    [54] LI S J, CHEN T, YANG S H et al. Attaining high figure of merit in the n-type Bi2Te2.7Se0.3-Ag2Te composite system via comprehensive regulation of its thermoelectric properties[J]. ACS Applied Materials & Interfaces, 36457(2023).

    [55] JUNG Y J, KIM H S, WON J H et al. Thermoelectric properties of Cu2Te nanoparticle incorporated n-type Bi2Te2.7Se0.3[J]. Materials, 2284(2022).

    [56] ZOU P, XU G Y, WANG S et al. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd[J]. Progress in Natural Science: Materials International, 210(2014).

    Tools

    Get Citation

    Copy Citation Text

    Yuting MENG, Xuemei WANG, Shuxian ZHANG, Zhiwei CHEN, Yanzhong PEI. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 2, 2024

    Accepted: --

    Published Online: Jan. 21, 2025

    The Author Email: Zhiwei CHEN (14czw@tongji.edu.cn), Yanzhong PEI (yanzhong@tongji.edu.cn)

    DOI:10.15541/jim20240165

    Topics