Chinese Journal of Lasers, Volume. 28, Issue 3, 209(2001)
Ytterbium-doped Fiber Amplifiers
[1] [1] D. C. Hanna, R. M. Percival, I. R. Perry et al.. Continuous-wave oscillation of a monomode ytterbium-doped fiber laser. Electron. Lett., 1988, 24(17):1111~1113
[2] [2] D. C. Hanna, R. M. Percival, I. R. Perry et al.. An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm. J. Mod. Opt., 1990, 37:517~525
[3] [3] J. R. Armitage, R. Wyatt, B. J. Ainslie et al.. Highly efficient 980 nm operation of an Yb3+-doped silica fiber laser. Electron. Lett., 1989, 25(5):298~299
[4] [4] J. Y. Allain, M. Monerie, H. Poignant et al.. Ytterbium-doped fluoride fiber laser operating at 1.02 μm. Electron. Lett., 1992, 28(11):988~989
[5] [5] J. Y. Allain, J. F. Bayon, M. Monerie et al.. Ytterbium-doped silica fiber laser with intracore Bragg gratings operating at 1.02 μm. Electron. Lett., 1993, 29(3):309~310
[6] [6] J. Y. Allain, M. Monerie, H. Poignant et al.. High-efficiency ytterbium-doped fluoride fiber laser. J. Non-Crystalline Solids, 1993, 161:270~273
[7] [7] S. Magne, M. Druetta, J. P. Goure et al.. An ytterbium-doped monomode fiber laser: amplified spontaneous emission modeling of gain and tunability in a external cavity. J. Lumin., 1994, 60:647~650
[8] [8] H. M. Pask, R. J. Carman, D. C. Hanna et al.. Ytterbium-doped silica fiber lasers:versatile sources for the 1~1.2 μm region. IEEE J. Select. Topics Quantum Electron., 1995, 1:2~13
[9] [9] C. R. Giles, E. Desurvire. Modeling erbium-doped fiber amplifiers. J. Lightwave Technol., 1991, 9(2):271~283
[10] [10] Bo Pedersen, Anders Bjarklev, Jrn Hedegaard Povlsen et al.. The design of erbium-doped fiber amplifiers. J. Lightwave Technol., 1991, 9(9):1105~1112
Get Citation
Copy Citation Text
[in Chinese], [in Chinese]. Ytterbium-doped Fiber Amplifiers[J]. Chinese Journal of Lasers, 2001, 28(3): 209