Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1700(2025)
Research Progress on Cathode Interface for All-Solid-State Lithium Batteries Based on Lithium-Rich Manganese-Based Layered Oxides Materials
[1] [1] DU H Z, ZHANG X, YU H J. Design of high-energy-density lithium batteries: Liquid to all solid state[J]. eTransportation, 2025, 23: 100382.
[2] [2] YAN J, QIAN J, LI Y, et al. Toward sustainable lithium iron phosphate in lithium-ion batteries: Regeneration strategies and their challenges[J]. Adv Funct Mater, 2024, 34(44): 2405055.
[3] [3] WANG K, WU D J, CHANG C Y, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. J Clean Prod, 2024, 434: 139992.
[4] [4] LIN R Q, BAK S M, SHIN Y, et al. Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials[J]. Nature Commun, 2021, 12(1): 2350.
[5] [5] PARK K J, HWANG J Y, RYU H H, et al. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: Are microcracks really critical?[J]. ACS Energy Lett, 2019, 4(6): 1394–1400.
[6] [6] JOSHI T, AZAM S, JUAREZ-ROBLES D, et al. Safety and quality issues of counterfeit lithium-ion cells[J]. ACS Energy Lett, 2023, 8(6): 2831–2839.
[7] [7] JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nat Energy, 2023, 8: 230–240.
[8] [8] SU Y, RONG X H, LI H, et al. High-entropy microdomain interlocking polymer electrolytes for advanced all-solid-state battery chemistries[J]. Adv Mater, 2023, 35(1): e2209402.
[9] [9] KALNAUS S, DUDNEY N J, WESTOVER A S, et al. Solid-state batteries: The critical role of mechanics[J]. Science, 2023, 381(6664): eabg5998.
[10] [10] WANG Y, WU D X, CHEN P H, et al. Dual-function modifications for high-stability Li-rich cathode toward sulfide all-solid-state batteries[J]. Adv Funct Mater, 2024, 34(4): 2309822.
[11] [11] YANG Z D, TANG B, REN D H, et al. Advancing solid-state sodium batteries: Status quo of sulfide-based solid electrolytes[J]. Mater Today, 2024, 80: 429–449.
[12] [12] HE W, GUO W B, WU H L, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Adv Mater, 2021, 33(50): e2005937.
[13] [13] SANTOS A, BARROS L M S, DE F V PELUSO A F, et al. Trends in ionic liquids and quasi-solid-state electrolytes for Li-S batteries: A review on recent progress and future perspectives[J]. Chem Eng J, 2024, 493: 152429.
[14] [14] MUZAKIR M, MANICKAVASAKAM K, CHENG E J, et al. Inorganic solid electrolytes for all-solid-state lithium/sodium-ion batteries: Recent developments and applications[J]. J Mater Chem A, 2025, 13(1): 73–135.
[15] [15] YANG Y L, GAO C, LUO T, et al. Unlocking the potential of Li-rich Mn-based oxides for high-rate rechargeable lithium-ion batteries[J]. Adv Mater, 2023, 35(52): e2307138.
[16] [16] TSUKASAKI H, OTOYAMA M, MORI Y, et al. Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries[J]. J Power Sources, 2017, 367: 42–48.
[17] [17] LIN Z Y, GUO X W, ZHANG R, et al. Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery[J]. Nano Energy, 2022, 98: 107330.
[18] [18] DING P P, LIN Z Y, GUO X W, et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries[J]. Mater Today, 2021, 51: 449–474.
[19] [19] YU H J, ZHOU H S. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries[J]. J Phys Chem Lett, 2013, 4(8): 1268–1280.
[20] [20] YU H J, ISHIKAWA R, SO Y G, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries[J]. Ang Chem Int Ed, 2013, 52(23): 5969–5973.
[21] [21] YU H J, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Lett, 2016, 16(5): 2907–2915.
[22] [22] ZHANG X, WANG B Y, ZHAO S, et al. Oxygen anionic redox activated high-energy cathodes: Status and prospects[J]. eTransportation, 2021, 8: 100118.
[23] [23] KOGA H, CROGUENNEC L, MNTRIER M, et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2[J]. J Electr Soc, 2013, 160(6): A786–A792.
[24] [24] FOIX D, SATHIYA M, MCCALLA E, et al. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high- capacity Li-ion battery layered-oxide electrodes[J]. J Phys Chem C, 2016, 120(2): 862–874.
[25] [25] LI X, QIAO Y, GUO S H, et al. Direct visualization of the reversible O2−/O− redox process in Li-rich cathode materials[J]. Adv Mater, 2018, 30(14): 1705197.
[26] [26] MCCALLA E, ABAKUMOV A M, SAUBANRE M, et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015, 350(6267): 1516–1521.
[27] [27] SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chem, 2016, 8(7): 692–697.
[28] [28] WU T H, ZHANG X, WANG Y Z, et al. Gradient “single-crystal” Li-rich cathode materials for high-stable lithium-ion batteries[J]. Adv Funct Mater, 2023, 33(4): 2210154.
[29] [29] WU T, LIU X, ZHANG X, et al. Full concentration gradient-tailored Li-rich layered oxides for high-energy lithium-ion batteries[J]. Adv Mater, 2021, 33(2): e2001358.
[30] [30] WANG E R, XIAO D D, WU T H, et al. Stabilizing oxygen by high-valance element doping for high-performance Li-rich layered oxides[J]. Battery Energy, 2023, 2(1): 20220030.
[31] [31] WANG E R, XIAO D D, WU T H, et al. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides[J]. Adv Funct Mater, 2022, 32(26): 2201744.
[32] [32] WANG E R, ZHAO Y, XIAO D D, et al. Composite nanostructure construction on the grain surface of Li-rich layered oxides[J]. Adv Mater, 2020, 32(49): e1906070.
[33] [33] WU T, ZHANG X, LI Y, et al. Quantitative identification of dopant occupation in Li-rich cathodes[J]. Adv Mater, 2025, 37(3): e2408543.
[34] [34] YANG Y B, ZHANG Z H, LIU S Q, et al. Cation configuration in transition-metal layered oxides[J]. Matter, 2022, 5(11): 3869–3882.
[35] [35] YANG H T, WANG L H, LI Y Q, et al. Co-free gradient lithium-rich cathode for high-energy batteries with optimized cyclability[J]. Proc Nat Acad Sci Un States Am, 2024, 121(50): e2412460121.
[36] [36] YU H J, SO Y G, REN Y, et al. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries[J]. J Am Chem Soc, 2018, 140(45): 15279–15289.
[37] [37] ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nat Commun, 2017, 8(1): 2219.
[38] [38] LIU T C, LIU J J, LI L X, et al. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature, 2022, 606(7913): 305–312.
[39] [39] SUN J M, SHENG C C, CAO X, et al. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials[J]. Adv Funct Mater, 2022, 32(10): 2110295.
[40] [40] MASSAROTTI V, CAPSONI D, BINI M, et al. Electric and magnetic properties of LiMn2O4- and Li2MnO3-type oxides[J]. J Solid State Chem, 1997, 131(1): 94–100.
[44] [44] LIU L J, WANG T, SUN L, et al. Stable cycling of all-solid-state lithium metal batteries enabled by salt engineering of PEO-based polymer electrolytes[J]. Energy Envir Mater, 2024, 7(2): e12580.
[45] [45] SEO Y, JUNG Y C, PARK M S, et al. Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries[J]. J Membr Sci, 2020, 603: 117995.
[46] [46] HUANG K X, WANG Y Y, MI H W, et al. BMIM] BF4-modified PVDF-HFP composite polymer electrolyte for high-performance solid-state lithium metal battery[J]. J Mater Chem A, 2020, 8(39): 20593–20603.
[48] [48] WHBA R, SU’AIT M S, WHBA F, et al. Research progress on polyacrylonitrile-based polymer electrolytes for electrochemical devices: Insight into electrochemical performance[J]. J Power Sources, 2024, 606: 234539.
[49] [49] SEKHON S S, ARORA N, AGNIHOTRY S A. PAN-based gel electrolyte with lithium salts[J]. Solid State Ion, 2000, 136: 1201–1204.
[50] [50] ZHAN X, PANG X K, MAO F Q, et al. Interfacial reconstruction unlocks inherent ionic conductivity of Li-La–Zr–Ta–O garnet in organic polymer electrolyte for durable room-temperature all-solid-state batteries[J]. Adv Energy Mater, 2024, 14(42): 2402509.
[51] [51] JIANG Y, HONG X Y, HUANG P, et al. Interfacial fusion-enhanced 11 μm-thick gel polymer electrolyte for high-performance lithium metal batteries[J]. J Energy Chem, 2024, 98: 58–66.
[52] [52] XIE K C, SHI L X. Ultrathin PEO based electrolyte for high voltage lithium metal batteries enabled by polymer host-plasticizer interactions[J]. J Energy Storage, 2023, 68: 107640.
[55] [55] OHTA S, SEKI J, YAGI Y, et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. J Power Sources, 2014, 265: 40–44.
[56] [56] LI G Z, LI M S, DONG L, et al. Low energy ion beam assisted deposition of controllable solid state electrolyte LiPON with increased mechanical properties and ionic conductivity[J]. Int J Hydr Energy, 2014, 39(30): 17466–17472.
[61] [61] LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50–53.
[62] [62] LI X N, LIANG J W, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy Environ Sci, 2019, 12(9): 2665–2671.
[63] [63] SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors[J]. Adv Energy Mater, 2020, 10(6): 1903719.
[64] [64] LIANG J W, LI X N, WANG S, et al. Site-occupation-tuned superionic LixScCl3+xHalide solid electrolytes for all-solid-state batteries[J]. J Am Chem Soc, 2020, 142(15): 7012–7022.
[65] [65] MUY S, VOSS J, SCHLEM R, et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors[J]. iScience, 2019, 16: 270–282.
[67] [67] MOHANTY D, HUQ A, PAYZANT E A, et al. Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: Insight into the crystal structure[J]. Chem Mater, 2013, 25(20): 4064–4070.
[68] [68] MOHANTY D, LI J L, ABRAHAM D P, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion[J]. Chem Mater, 2014, 26(21): 6272–6280.
[69] [69] HU E Y, YU X Q, LIN R Q, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nat Energy, 2018, 3: 690–698.
[70] [70] YANG Y, HU N F, ZHANG Y H, et al. Origin of the seriously limited anionic redox reaction of Li-rich cathodes in sulfide all-solid-state batteries[J]. ACS Appl Mater Inter, 2023, 15(25): 30060–30069.
[71] [71] XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991–2015.
[72] [72] YAN M, WANG W P, YIN Y X, et al. Interfacial design for lithium–sulfur batteries: From liquid to solid[J]. EnergyChem, 2019, 1(1): 100002.
[73] [73] YU X W, MANTHIRAM A. Electrode–electrolyte interfaces in lithium-based batteries[J]. Energy Environ Sci, 2018, 11(3): 527–543.
[74] [74] FU J L, LI Z, ZHOU X Y, et al. Ion transport in composite polymer electrolytes[J]. Mater Adv, 2022, 3(9): 3809–3819.
[75] [75] WU Y Q, LI C, ZHENG X F, et al. High energy sulfide-based all-solid-state lithium batteries enabled by single-crystal Li-rich cathodes[J]. ACS Energy Letters, 2024, 9(10): 5156–5165.
[76] [76] CHOI M, HAM G, JIN B S, et al. Ultra-thin Al2O3 coating on the acid-treated 0.3Li2MnO3⋅0.7LiMn0.60Ni0.25Co0.15O2 electrode for Li-ion batteries[J]. J Alloys Compd, 2014, 608: 110–117.
[77] [77] XIAO B W, WANG B Q, LIU J, et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating[J]. Nano Energy, 2017, 34: 120–130.
[78] [78] ZHANG X D, SHI J L, LIANG J Y, et al. Suppressing surface lattice oxygen release of Li-rich cathode materialsviaheterostructured spinel Li4Mn5O12 coating[J]. Adv Mater, 2018: e1801751.
[79] [79] XU Z, GUO X Z, SONG W J, et al. Sulfur-assisted surface modification of lithium-rich manganese-based oxide toward high anionic redox reversibility[J]. Adv Mater, 2024, 36(1): e2303612.
[80] [80] KUNDU S, EIN-ELI Y. A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries[J]. J Power Sources, 2023, 553: 232267.
[81] [81] ZHANG T F, HE W J, ZHANG W, et al. Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries[J]. Chem Sci, 2020, 11(33): 8686–8707.
[82] [82] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2016, 28(1): 266–273.
[83] [83] NAGAO K J, NAGATA Y, SAKUDA A, et al. A reversible oxygen redox reaction in bulk-type all-solid-state batteries[J]. Sci Adv, 2020, 6(25): eaax7236.
[84] [84] DU W B, SHAO Q N, WEI Y Q, et al. High-energy and long-cycling all-solid-state lithium-ion batteries with Li- and Mn-rich layered oxide cathodes and sulfide electrolytes[J]. ACS Energy Lett, 2022, 7(9): 3006–3014.
[85] [85] HU N F, ZHANG Y H, YANG Y, et al. Unraveling the spatial asynchronous activation mechanism of oxygen redox-involved cathode for high-voltage solid-state batteries[J]. Adv Energy Mater, 2024, 14(13): 2303797.
[86] [86] SONG G, LEE S, KIM T, et al. Mechano-electrochemical behavior of nanostructured Li- and Mn-rich layered oxides with superior capacity retention and voltage decay for sulfide-based all-solid-state batteries[J]. Adv Energy Mater, 2024, 14(47): 2403374.
[87] [87] Yu R, Wang C, Duan H, et al. Manipulating Charge‐Transfer Kinetics of Lithium‐Rich Layered Oxide Cathodes in Halide All‐Solid‐State Batteries [J]. Adv Mater, 2023, 35(5): 2207234.
[88] [88] SUN S, ZHAO C Z, YUAN H, et al. Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries[J]. Sci Adv, 2022, 8(47): eadd5189.
[89] [89] KONG W J, ZHAO C Z, SHEN L, et al. Bulk/interfacial structure design of Li-rich Mn-based cathodes for all-solid-state lithium batteries[J]. J Am Chem Soc, 2024, 146(41): 28190–28200.
[90] [90] Sun S, Zhao C Z, Liu G Y, et al. Boosting Anionic Redox Reactions of Li‐Rich Cathodes through Lattice Oxygen and Li‐Ion Kinetics Modulation in Working All‐Solid‐State Batteries [J]. Adv Mater, 2025, 37(6): 2414195.
[91] [91] LIU W Z, MENG X H, ZHOU Z Y, et al. Alleviating the sluggish kinetics of all-solid-state batteriesviacathode single-crystallization and multi-functional interface modification[J]. J Energy Chem, 2024, 98: 123–133.
[92] [92] LI X H, YE Q, WU Z, et al. High-voltage all-solid-state lithium batteries with Li3InCl6 electrolyte and LiNbO3 coated lithium-rich manganese oxide cathode[J]. Electrochim Acta, 2023, 453: 142361.
[93] [93] ZHANG A B, WANG J, YU R Z, et al. Practical application of Li-rich materials in halide all-solid-state batteries and interfacial reactions between cathodes and electrolytes[J]. ACS Appl Mater Inter, 2023, 15(6): 8190–8199.
[94] [94] LI S, SUN Y P, LI N, et al. Porosity development at Li-rich layered cathodes in all-solid-state battery duringIn situdelithiation[J]. Nano Letters, 2022, 22(12): 4905–4911.
[95] [95] SUN F R, YANG Y B, ZHAO S, et al. Local Li+ framework regulation of a garnet-type solid-state electrolyte[J]. ACS Energy Lett, 2022, 7(8): 2835–2844.
[96] [96] YIN X, LI D Y, HAO L W, et al. A high-energy all-solid-state lithium metal battery with “single-crystal” lithium-rich layered oxides[J]. Chem Commun, 2023, 59(5): 639–642.
[97] [97] PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chem Mater, 2016, 28(21): 8051–8059.
[98] [98] CHEN B T, ZHANG P J, WONG D D, et al. Achieving the high capacity and high stability of Li-rich oxide cathode in garnet-based solid-state battery[J]. Angew Chem Inter Ed, 2024, 63(1): e202315856.
[99] [99] FANG D B, LI Y L, WANG C Z, et al. Wide-temperature solid-state sodium metal batteries using Na+ superionic conductor-type solid electrolytes[J]. Energy Storage Mater, 2025, 74: 103973.
[100] [100] WANG T R, ZHANG R Q, WU Y M, et al. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries[J]. J Energy Chem, 2020, 46: 187–190.
[101] [101] WANG H C, YANG Y L, GAO C, et al. An entanglement association polymer electrolyte for Li-metal batteries[J]. Nature Commun, 2024, 15(1): 2500.
[102] [102] YIN X, ZHAO S, LIN Z Y, et al. A propanesultone-based polymer electrolyte for high-energy solid-state lithium batteries with lithium-rich layered oxides[J]. J Mater Chem A, 2023, 11(35): 19118–19127.
Get Citation
Copy Citation Text
GUO Zhiqiang, GUO Xianwei, LIU Shiqi, MA Zhongqiang, LI Yang, WANG Guoqing, YU Haijun. Research Progress on Cathode Interface for All-Solid-State Lithium Batteries Based on Lithium-Rich Manganese-Based Layered Oxides Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1700
Category:
Received: Dec. 31, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: GUO Xianwei (xwguo@bjut.edu.cn)