Journal of Quantum Optics, Volume. 29, Issue 1, 10102(2023)

Quantum Coherence and Quantum Entanglement in the Spin Chain with Three-site Interaction

YANG Jing1 and HUANG Yan-xia2,3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(52)

    [5] [5] GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. Nature photonics, 2011, 5(4):222-229. DOI: 10.1038/nphoton.2011.35.

    [6] [6] KIM Y, BERTAGNA F, D’SOUZA E M, et al. Quantum biology: An update and perspective[J]. Quantum Reports, 2021, 3(1):80-126. DOI: 10.3390/quantum3010006.

    [7] [7] RATHBONE H W, DAVIS J A, MICHIE K A, et al. Coherent phenomena in photosynthetic light harvesting: part two-observations in biological systems[J]. Biophysical Reviews, 2018, 10(5):1443-1463. DOI: 10.1007/s12551-018-0456-x.

    [8] [8] HENAO I, SERRA R M. Role of quantum coherence in the thermodynamics of energy transfer[J]. Physical Review E, 2018, 97(6):062105. DOI: 10.1103/PhysRevE.97.062105.

    [9] [9] FRANCICA G, BINDER F C, GUARNIERI G, et al. Quantum coherence and ergotropy[J]. Physical Review Letters, 2020, 125(18):180603. DOI: 10.1103/PhysRevLett.125.180603.

    [10] [10] LATUNE C L, SINAYSKIY I, PETRUCCIONE F. Apparent temperature: demystifying the relation between quantum coherence, correlations, and heat flows[J]. Quantum Science and Technology, 2019, 4(2):025005. DOI: 10.1088/2058-9565/aaf5f7.

    [11] [11] HU M L, GAO Y Y, FAN H. Steered quantum coherence as a signature of quantum phase transitions in spin chains[J]. Physical Review A, 2020, 101(3):032305. DOI: 10.1103/PhysRevA.101.032305.

    [12] [12] QIN M, REN Z, ZHANG X. Dynamics of quantum coherence and quantum phase transitions in XY spin systems[J]. Physical Review A, 2018, 98(1):012303. DOI: 10.1103/PhysRevA.98.012303.

    [13] [13] XIE Y X. Steered quantum coherence and quantum criticality in the XY model with Dzyaloshinsky-Moriya interaction[J]. Physica Status Solidi (b), 2021, 258(4):2000322. DOI: 10.1002/pssb.202000322.

    [14] [14] CHENG J Q, XU J B. Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices[J]. Physical Review E, 2018, 97(6):062134. DOI: 10.1103/PhysRevE.97.062134.

    [15] [15] HUANG Z. Quantum teleportation in thermal fluctuating electromagnetic field[J]. International Journal of Theoretical Physics, 2019, 58(2):383-390. DOI: 10.1007/s10773-018-3939-4.

    [16] [16] WU K D, HOU Z, ZHAO Y Y, et al. Experimental cyclic interconversion between coherence and quantum correlations[J]. Physical Review Letters, 2018, 121(5):050401. DOI: 10.1103/PhysRevLett.121.050401.

    [17] [17] WANG W, HAN J, YADIN B, et al. Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit[J]. Physical Review Letters, 2019, 123(22):220501. DOI: 10.1103/PhysRevLett.123.220501.

    [18] [18] XI Y, ZHANG T, ZHENG Z J, et al. Converting quantum coherence to genuine multipartite entanglement and nonlocality[J]. Physical Review A, 2019, 100(2):022310. DOI: 10.1103/PhysRevA.100.022310.

    [19] [19] BERA M N, QURESHI T, SIDDIQUI M A, et al. Duality of quantum coherence and path distinguishability[J]. Physical Review A, 2015, 92(1):012118. DOI: 10.1103/PhysRevA.92.012118.

    [20] [20] AKMAK B, KARPAT G, FANCHINI F F. Factorization and criticality in the anisotropic xy chain via correlations[J]. Entropy, 2015, 17(2):790-817. DOI: 10.3390/e17020790.

    [21] [21] STRELTSOV A, SINGH U, DHAR H S, et al. Measuring quantum coherence with entanglement[J]. Physical Review Letters, 2015, 115(2):020403. DOI: 10.1103/PhysRevLett.115.020403.

    [22] [22] STRELTSOV A, ADESSO G, PLENIO M B. Colloquium: Quantum coherence as a resource[J]. Reviews of Modern Physics, 2017, 89(4):041003. DOI: 10.1103/RevModPhys.89.041003.

    [23] [23] YAO Y, XIAO X, GE L, et al. Quantum coherence in multipartite systems[J]. Physical Review A, 2015, 92(2):022112. DOI: 10.1103/PhysRevA.92.022112.

    [24] [24] BAUMGRATZ T, CRAMER M, PLENIO M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14):140401. DOI: 10.1103/PhysRevLett.113.140401.

    [25] [25] WINTER A, YANG D. Operational resource theory of coherence[J]. Physical Review Letters, 2016, 116(12):120404. DOI: 10.1103/PhysRevLett.116.120404.

    [26] [26] NAPOLI C, BROMLEY T R, CIANCIARUSO M, et al. Robustness of coherence: an operational and observable measure of quantum coherence[J]. Physical Review Letters, 2016, 116(15):150502. DOI: 10.1103/PhysRevLett.116.150502.

    [27] [27] BU K, SINGY U, FEI S M, et al. Maximum relative entropy of coherence: an operational coherence measure[J]. Physical Review Letters, 2017, 119(15):150405. DOI: 10.1103/PhysRevLett.119.150405.

    [28] [28] MA J, YADIN B, GIROLAMI D, et al. Converting coherence to quantum correlations[J]. Physical Review Letters, 2016, 116(16):160407. DOI: 10.1103/PhysRevLett.116.160407.

    [29] [29] SHI H L, LIU S Y, WANG X H, et al. Coherence depletion in the Grover quantum search algorithm[J]. Physical Review A, 2017, 95(3):032307. DOI: 10.1103/PhysRevA.95.032307.

    [30] [30] SAXENA G, CHITAMBAR E, GOUR G. Dynamical resource theory of quantum coherence[J]. Physical Review Research, 2020, 2(2):023298. DOI: 10.1103/PhysRevResearch.2.023298.

    [31] [31] HU M, ZHOU W. Enhancing two-qubit quantum coherence in a correlated dephasing channel[J]. Laser Physics Letters, 2019, 16(4):045201. DOI: 10.1088/1612-202X/ab00fa.

    [32] [32] BROMLEY T R, CIANCIARUSO M, ADESSO G. Frozen quantum coherence[J]. Physical Review Letters, 2015, 114(21):210401. DOI: 10.1103/PhysRevLett.114.210401.

    [33] [33] YU X D, ZHANG D J, LIU C L, et al. Measure-independent freezing of quantum coherence[J]. Physical Review A, 2016, 93(6):060303. DOI: 10.1103/PhysRevA.93.060303.

    [34] [34] KARPAT G, AKMAK B, FANCHINI F F. Quantum coherence and uncertainty in the anisotropic XY chain[J]. Physical Review B, 2014, 90(10):104431. DOI: 10.1103/PhysRevB.90.104431.

    [37] [37] MATHEW G, SILVA S L L, JAIN A, et al. Experimental realization of multipartite entanglement via quantum Fisher information in a uniform antiferromagnetic quantum spin chain[J]. Physical Review Research, 2020, 2(4):043329. DOI: 10.1103/PhysRevResearch.2.043329.

    [38] [38] SOUZA A M, REIS M S, SOARES-PINTO D O, et al. Experimental determination of thermal entanglement in spin clusters using magnetic susceptibility measurements[J]. Physical Review B, 2008, 77(10):104402. DOI: 10.1103/PhysRevB.77.104402.

    [39] [39] RAPPOPORT T G, GHIVELDER L, FERNANDES J C, et al. Experimental observation of quantum entanglement in low-dimensional spin systems[J]. Physical Review B, 2007, 75(5):054422. DOI: 10.1103/PhysRevB.75.054422.

    [40] [40] ROGER M, HETHERINGTON J H, DELRIEU J M. Magnetism in solid He3[J]. Reviews of Modern Physics, 1983, 55(1):1. DOI: 10.1103/RevModPhys.55.1.

    [41] [41] HONDA Y, KURAMOTO Y, WATANABE T. Effects of cyclic four-spin exchange on the magnetic properties of the CuO2 plane[J]. Physical Review B, 1993, 47(17):11329. DOI: 10.1103/PhysRevB.47.11329.

    [42] [42] MATSUDA M, KATSUMATA K, ECCLESTON R S, et al. Magnetic excitations from the S=1/2 two-leg ladders in La6Ca8Cu24O41[J]. Journal of Applied Physics, 2000, 87(9):6271-6273. DOI: https://doi.org/10.1063/1.372676.

    [43] [43] IMAI T, THURBER K R, SHEN K M, et al. 17O and 63Cu NMR in Undoped and Hole Doped Cu2O3 Two-Leg Spin Ladder A14Cu24O41 (A14=La6Ca8, Sr14, Sr11Ca3)[J]. Physical Review Letters, 1998, 81(1):220. DOI: 10.1103/PhysRevLett.81.220.

    [44] [44] WINDT M, GRNINGER M, NUNNER T, et al. Observation of Two-Magnon Bound States in the Two-Leg Ladders of (Ca,La)14Cu24?O41[J]. Physical Review Letters, 2001, 87(12):127002. DOI: 10.1103/PhysRevLett.87.127002.

    [45] [45] CAPOGROSSO-SANSONE B, WESSEL S, BCHLER H P, et al. Phase diagram of one-dimensional hard-core bosons with three-body interactions[J]. Physical Review B, 2009, 79(2):020503. DOI: 10.1103/PhysRevB.79.020503.

    [46] [46] PACHOS J K, PLENIO M B. Three-spin interactions in optical lattices and criticality in cluster Hamiltonians[J]. Physical Review Letters, 2004, 93(5):056402. DOI: 10.1103/PhysRevLett.93.056402.

    [47] [47] WERLANG T, TRIPPE C, RIBEIRO G A P, et al. Quantum correlations in spin chains at finite temperatures and quantum phase transitions[J]. Physical Review Letters, 2010, 105(9):095702. DOI: 10.1103/PhysRevLett.105.095702.

    [48] [48] CHENG W W, SHAN C J, HUANG Y X, et al. Entanglement in the Heisenberg spin chain with multiple interaction[J]. Physica E: Low-dimensional Systems and Nanostructures, 2010 43(1):235-238. DOI: 10.1016/j.physe.2010.07.012.

    [49] [49] CHENG W W, LIU J M. Fidelity susceptibility approach to quantum phase transitions in the XY spin chain with multisite interactions[J]. Physical Review A, 2010, 82(1):012308. DOI: 10.1103/PhysRevA.82.012308.

    [50] [50] LI Y C, LIN H Q. Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction[J]. Physical Review A, 2011, 83(5):052323. DOI: 10.1103/PhysRevA.83.052323.

    [51] [51] XIANG H, ZHU S Q. Quantum communication in spin chain with multiple spin exchange interaction[J]. Communications in Theoretical Physics, 2010, 53(6):1083.

    [52] [52] TAME M S, PATERNOSTRO M, KIM M S, et al. Natural three-qubit interactions in one-way quantum computing[J]. Physical Review A, 2006, 73(2):022309.

    [53] [53] YANG J, YANG L, HUANG Y X. The Evolution of quantum discord and entanglement in the XXZ Heisenberg spin chain under Ornstein-Uhlenbeck noise[J]. International Journal of Theoretical Physics, 2021, 60(9):3404-3416. DOI: 10.1007/s10773-021-04898-7.

    [54] [54] WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 1998, 80(10):2245. DOI: 10.1103/PhysRevLett.80.2245.

    [55] [55] WERLANG T, RIGOLIN G. Thermal and magnetic quantum discord in Heisenberg models[J]. Physical Review A, 2010, 81(4):044101. DOI: 10.1103/PhysRevA.81.044101.

    Tools

    Get Citation

    Copy Citation Text

    YANG Jing, HUANG Yan-xia. Quantum Coherence and Quantum Entanglement in the Spin Chain with Three-site Interaction[J]. Journal of Quantum Optics, 2023, 29(1): 10102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 19, 2022

    Accepted: --

    Published Online: Nov. 17, 2023

    The Author Email: HUANG Yan-xia (huangyx617@163.com)

    DOI:10.3788/jqo20232901.0102

    Topics