Semiconductor Optoelectronics, Volume. 44, Issue 5, 747(2023)
Intelligent Detection of Impaired Water in Remote Sensing Images Based on Multi-scale Feature Fusion U-Net
[1] [1] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index: A new technique for surface water mapping using landsat imagery\[J\]. Remote Sensing of Environment, 2014, 140: 23-35.
[2] [2] Bond N R, Lake P S, Arthington A H. The impacts of drought on freshwater ecosystems: An Australian perspective\[J\]. Hydrobiologia, 2008, 600: 3-16.
[3] [3] Kondo H, Seo N, Yasuda T, et al. Post-flood-infectious diseases in Mozambique\[J\]. Prehospital and Disaster Medicine, 2002, 17(3): 126-133.
[4] [4] Li K Z, Wu S H, Dai E F, et al. Flood loss analysis and quantitative risk assessment in China\[J\]. Natural Hazards, 2012, 63(2): 737-760.
[5] [5] Lazaro T R. Urban Hydrology: A Multidisciplinary Perspective\[M\]. Ann Arbor Science Publishers, 1979.
[11] [11] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation\[J\]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[12] [12] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs\[J\]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[13] [13] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs\[J/OL\]. ArXiv, 2014, 1412:7062\[2023-8-18\].https://arxiv.org/pdf/1412.7062.pdf.
[14] [14] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs\[J\]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2016, 40(4): 834-848.
[16] [16] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation\[C\]// Inter. Conf. on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[17] [17] Li J T, Xu M L, Xiu H L. U-net network for building information extraction of remote-sensing imagery\[J\]. Inter. J. of Online and Biomedical Engineering, 2018, 14(12): 179-190.
[18] [18] Shamsolmoali P, Zareapoor M, Wang R L, et al. A novel deep structure U-Net for sea-land segmentation in remote sensing images\[J\]. IEEE J. of Sel. Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3219-3232.
[19] [19] Li R, Zheng S Y, Duan C X, et al. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images\[J\]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 8009205.
[21] [21] Wang G J, Wu M J, Wei X K, et al. Water identification from high-resolution remote sensing images based on multidimensional densely connected convolutional neural networks\[J\]. Remote Sensing, 2020, 12(5): 795-795.
[25] [25] Hu J, Shen L, Sun G. Squeeze-and-excitation networks\[C\]// Proc. of the 2018 IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[26] [26] Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks\[C\]// Proc. of the 2020 IEEE Conf. on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[27] [27] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module\[C\]// Proc. of the 15th European Conf. on Computer Vision, 2018: 3-19.
Get Citation
Copy Citation Text
LIU Yixuan, DONG Xingpeng, HE Shengwen, WEI Lingling, SUN Zhongping, BAI Shuang, LI Donghao. Intelligent Detection of Impaired Water in Remote Sensing Images Based on Multi-scale Feature Fusion U-Net[J]. Semiconductor Optoelectronics, 2023, 44(5): 747
Category:
Received: Jul. 19, 2023
Accepted: --
Published Online: Nov. 20, 2023
The Author Email: SUN Zhongping (sunnybnu114@163.com)