Acta Optica Sinica, Volume. 41, Issue 3, 0310001(2021)
Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network
Fig. 2. Schematic of standard convolution and dilated convolution. (a) 2D standard convolution; (b) 2D dilated convolution (r=2,2); (c) 3D standard convolution; (d) 3D dilated convolution (r=2,2,2)
Fig. 3. Multi-scale feature fusion structure. (a) Multi-scale spatial-spectral feature fusion module; (b) multi-scale spatial feature fusion module
Fig. 4. Structure diagram of attention module. (a) Spatial-spectral attention module; (b) spatial attention module
Fig. 6. False color image and ground truth of data sets. (a) PU data set; (b) SA data set
Fig. 7. Comparison of accuracy for different spatial sizes. (a) PU data set; (b) SA data set
Fig. 8. Classification maps and partial enlarged maps with different algorithms on PU data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
Fig. 9. Classification maps with different algorithms on SA data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
Fig. 10. Overall accuracy with different numbers of training samples. (a) PU data set; (b) SA data set
|
|
|
|
|
|
Get Citation
Copy Citation Text
Xiangdong Zhang, Tengjun Wang, Shaojun Zhu, Yun Yang. Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network[J]. Acta Optica Sinica, 2021, 41(3): 0310001
Category: Image Processing
Received: Jul. 6, 2020
Accepted: Sep. 8, 2020
Published Online: Feb. 28, 2021
The Author Email: Xiangdong Zhang (18755150056@163.com)