Acta Optica Sinica, Volume. 41, Issue 3, 0310001(2021)

Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network

Xiangdong Zhang*, Tengjun Wang, Shaojun Zhu, and Yun Yang
Author Affiliations
  • School of Geology Engineering and Geomatics, Chang′an University, Xi′an, Shaanxi 710054, China
  • show less
    Figures & Tables(16)
    Structure of tandem 3D-2D-CNN
    Schematic of standard convolution and dilated convolution. (a) 2D standard convolution; (b) 2D dilated convolution (r=2,2); (c) 3D standard convolution; (d) 3D dilated convolution (r=2,2,2)
    Multi-scale feature fusion structure. (a) Multi-scale spatial-spectral feature fusion module; (b) multi-scale spatial feature fusion module
    Structure diagram of attention module. (a) Spatial-spectral attention module; (b) spatial attention module
    Overall structure of proposed network
    False color image and ground truth of data sets. (a) PU data set; (b) SA data set
    Comparison of accuracy for different spatial sizes. (a) PU data set; (b) SA data set
    Classification maps and partial enlarged maps with different algorithms on PU data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
    Classification maps with different algorithms on SA data set. (a) Ground truth image; (b) 2D-CNN-MLP; (c) 3D-CNN-CRF; (d) Hybrid-CNN; (e) Dilated-3D-CNN; (f) 3D-2D-ADCNN
    Overall accuracy with different numbers of training samples. (a) PU data set; (b) SA data set
    • Table 1. Comparison of overall accuracy, training time, and test time for different convolution kernel numbers

      View table

      Table 1. Comparison of overall accuracy, training time, and test time for different convolution kernel numbers

      Kernel numberPavia UniversitySalinas
      OA /%Training time /sTest time /sOA /%Training time /sTest time /s
      1697.78118.0329.7196.48243.4266.38
      2096.87130.5634.1997.28324.7176.93
      2497.17149.9338.3496.26373.5788.24
      2896.25185.7443.3595.88383.8398.84
      3297.05165.5846.7696.12416.47107.36
    • Table 2. Comparison of parameters and overall accuracy for different model architectures

      View table

      Table 2. Comparison of parameters and overall accuracy for different model architectures

      ArchitecturePavia UniversitySalinas
      ParameterOA /%ParameterOA /%
      3D-2D-CNN (baseline)7559698.1113964498.03
      3D-2D-CNN+dilated convolution5678398.4711040298.42
      3D-2D-CNN+attention7564398.5113971898.38
      3D-2D-CNN+dilated convolution+attention5685798.7311047698.61
    • Table 3. Comparison of classification accuracy for different algorithms on PU data setunit: %

      View table

      Table 3. Comparison of classification accuracy for different algorithms on PU data setunit: %

      Category name2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
      Asphalt87.3386.7890.8984.8696.82
      Meadows90.4686.5196.3187.6799.47
      Gravels84.9185.7694.4587.7399.35
      Trees93.0096.2792.3997.7197.77
      Painted-Metal-Sheets99.7299.9099.7899.7599.92
      Bare-Soil88.4685.1899.0685.94100.00
      Bitumen94.6793.2399.2489.3399.84
      Self-Blocking-Bricks85.0486.7487.8183.7698.91
      Shadows98.9499.1196.8799.8298.57
      OA89.7687.9294.8989.4898.75
      AA91.3991.0595.2089.8998.96
      Kappa96.5484.2293.2686.0498.60
    • Table 4. Comparison of classification accuracy for different algorithms on SA data setunit: %

      View table

      Table 4. Comparison of classification accuracy for different algorithms on SA data setunit: %

      Category name2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
      Brocoli_green_weeds_199.9899.3999.9999.97100.00
      Brocoli_green_weeds_299.4898.9299.9699.70100.00
      Fallow99.2799.5998.5799.08100.00
      Fallow_rough_plow99.3099.1699.4799.4799.61
      Fallow_smooth98.4497.4498.6596.8699.80
      Stubble99.7699.9499.7999.76100.00
      Celery99.6199.6099.8499.60100.00
      Grapes_untrained79.4076.0988.9070.8394.17
      Soil_vinyard_develop99.9299.7398.6199.05100.00
      Corn_senesced_green_weeds95.6194.5299.1892.72100.00
      Lettuce_romaine_4wk99.0299.2999.8298.78100.00
      Lettuce_romaine_5wk99.9999.8899.0199.92100.00
      Lettuce_romaine_6wk99.9899.7899.5299.33100.00
      Lettuce_romaine_7wk98.8699.0199.4199.3899.89
      Vinyard_untrained81.9079.8394.7181.4099.09
      Vinyard_vertical_trellis98.0597.1499.8198.36100.00
      OA92.5791.3896.4890.2598.61
      AA96.7996.2198.4595.8299.53
      Kappa91.7390.4096.0989.1798.45
    • Table 5. Comparison of parameters, training time, and test time for different algorithms on PU data set

      View table

      Table 5. Comparison of parameters, training time, and test time for different algorithms on PU data set

      Item2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
      Parameter33129155017484479341380156857
      Training time /s8.91103.3063.75671.89122.22
      Test time /s2.1713.047.8572.3651.93
    • Table 6. Comparison of parameters, training time, and test time for different algorithms on SA data set

      View table

      Table 6. Comparison of parameters, training time, and test time for different algorithms on SA data set

      Item2D-CNN-MLP3D-CNN-CRFHybrid-CNNDilated-3D-CNN3D-2D-ADCNN
      Parameter335561921444845696498912110476
      Training time /s16.94276.0897.082122.97327.33
      Test time /s2.7027.699.70170.50122.61
    Tools

    Get Citation

    Copy Citation Text

    Xiangdong Zhang, Tengjun Wang, Shaojun Zhu, Yun Yang. Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network[J]. Acta Optica Sinica, 2021, 41(3): 0310001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 6, 2020

    Accepted: Sep. 8, 2020

    Published Online: Feb. 28, 2021

    The Author Email: Xiangdong Zhang (18755150056@163.com)

    DOI:10.3788/AOS202141.0310001

    Topics