Computer Applications and Software, Volume. 42, Issue 4, 201(2025)
ARTIFICIAL INTELLIGENCE ALGORITHM FOR STRING-LEVEL SEMANTIC SEGMENTATION IN AERIAL IMAGES OF PHOTOVOLTAIC POWER STATION
[3] [3] Otamendi U, Martinez I, Quartulli M, et al. Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules[J]. Solar Energy, 2021, 220: 914-926.
[5] [5] Wang Y. Otsu image threshold segmentation method based on seagull optimization algorithm[J]. Journal of Physics: Conference Series, 2020, 1650(3): 1742-1796.
[7] [7] Agrawal A, Tyagi N. Review on digital image segmentation techniques[J]. Journal of Critical Reviews, 2020, 7(3): 3011-3021.
[8] [8] Zou Z X, Shi Z W, Guo Y H. Object detection in 20 years: A survey[EB]. arXiv: 1905.05055, 2019.
[9] [9] He K M, Gkioxari G, Dollar P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision, 2017: 2961-2969.
[10] [10] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[11] [11] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[12] [12] Han Y, Ye J C. Framing U-Net via deep convolutional framelets: Application to sparse-view CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1418-1429.
[13] [13] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[14] [14] Chaurasia A, Culurciello E. LinkNet: Exploiting encoder representations for efficient semantic segmentation[C]//IEEE Visual Communications and Image Processing, 2017: 1-4.
[15] [15] Roy A G, Navab N, Wachinger C. Concurrent spatial and channel squeeze & excitation in fully convolutional networks[EB]. arXiv: 1803.02579, 2018.
[16] [16] Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017: 7132-7141.
[17] [17] Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C]//4th International Conference on 3D Vision, 2016: 565-571.
[18] [18] Chen H, Wang S, Xing J. Detection of cracks in electroluminescence images by fusing deep learning and structural decoupling[C]//Chinese Automation Congress, 2019: 2565-2569.
[19] [19] Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning[EB]. arXiv: 1712.04621, 2017.
[20] [20] Neubeck A, Van Gool L. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition, 2006, 3: 850-855.
Get Citation
Copy Citation Text
Meng Ziyao, Xu Shengzhi, Wang Lichao, Gong Youkang, Zhang Xiaodan, Zhao Ying. ARTIFICIAL INTELLIGENCE ALGORITHM FOR STRING-LEVEL SEMANTIC SEGMENTATION IN AERIAL IMAGES OF PHOTOVOLTAIC POWER STATION[J]. Computer Applications and Software, 2025, 42(4): 201
Category:
Received: Nov. 9, 2021
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: