Chinese Optics Letters, Volume. 19, Issue 8, 081301(2021)
Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd,Gd:CaF2 waveguides Editors' Pick
[1] C. Grivas. Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications. Prog. Quantum Electron., 45–46, 3(2016).
[2] Y. C. Jia, F. Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review. Chin. Opt. Lett., 17, 012302(2019).
[3] F. Chen, J. R. Vázquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev., 8, 251(2014).
[4] F. Chen. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photon. Rev., 6, 622(2012).
[5] J. Leute, N. Huntemann, B. Lipphardt, C. Tamm, P. B. R. Nisbet-Jones, S. A. King, R. M. Godun, J. M. Jones, H. S. Margolis, P. B. Whibberley, A. Wallin, M. Merimaa, P. Gill, E. Peik. Frequency comparison of 171Yb+ ion optical clocks at PTB and NPL via GPS PPP. IEEE. Trans. Ultrason. Ferr., 63, 981(2016).
[6] C. Kränkel, D. T. Marzahl, F. Moglia, G. Huber, P. W. Metz. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photon. Rev., 10, 548(2016).
[7] Y. Y. Ren, C. Cheng, Y. C. Jia, Y. Jiao, D. W. Li, M. D. Mackenzie, A. K. Kar, F. Chen. Switchable single-dual-wavelength Yb,Na:CaF2 waveguide lasers operating in continuous-wave and pulsed regimes. Opt. Mater. Express, 8, 1633(2018).
[8] C. Grivas, C. Corbari, G. Brambilla. Recent progress in continuous-wave Ti:sapphire waveguide lasers. Proc. SPIE, 8988, 898808(2014).
[9] Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, A. K. Kar. 7.8-GHz graphene-based 2-µm monolithic waveguide laser. IEEE. J. Set. Top. Quantum Electron., 21, 1602106(2015).
[10] S. A. Mcdaniel, A. Lancaster, J. W. Evans, A. K. Kar, G. Cook. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide. Opt. Express, 24, 3502(2016).
[11] J. E. Moffact, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, N. A. Spooner. A practical review of shorter than excitation wavelength light emission processes. Appl. Spectrosc. Rev., 55, 327(2019).
[12] W. J. Yao, Q. Y. Tian, W. Wu. Tunable emissions of upconversion fluorescence for security applications. Adv. Opt. Mater., 7, 1801171(2019).
[13] D. Y. Li, H. Ågren, G. Y. Chen. Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton. Trans., 47, 8526(2018).
[14] Y. Qiao, S. H. Li, W. H. Liu, M. Q. Ran, H. F. Lu, Y. P. Yang. Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells. Nanomaterials, 8, 43(2018).
[15] Y. Choi, S. H. Baek, S. J. Chang, Y. Song, R. Rafique, K. T. Lee. Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosens. Bioelectron., 93, 267(2017).
[16] A. Fernandez-Bravo, K. Y. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, P. J. Schuck. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol., 13, 572(2018).
[17] B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, H. V. Demir. Stable and low-threshold optical gain in CdSe/CdS quantum dots: an all colloidal frequency upconverted laser. Adv. Mater., 27, 2741(2015).
[18] Z. B. Li, J. X. Yang, M. Shi, L. Yang. Upconversion luminescence of graphene oxide through hybrid waveguide. J. Phys. Chem. C, 122, 16866(2018).
[19] J. M. Lv, X. T. Hao, F. Chen. Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal. Opt. Express, 24, 25482(2016).
[20] L. M. Zhang, T. Y. Guo, Y. Y. Ren, Y. J. Cai, M. D. Mackenzie, A. K. Kar, Y. C. Yao. Cooperative up-converted luminescence in Yb,Na:CaF2 cladding waveguides by femtosecond laser inscription. Opt. Commun., 441, 8(2019).
[21] R. Osellame, H. Hoekstra, G. Cerullo, M. Pollnau. Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photon. Rev., 5, 442(2011).
[22] D. Choudhury, J. R. Macdonald, A. K. Kar. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photon. Rev., 8, 827(2014).
[23] K. Sugioka, Y. Cheng. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).
[24] D. Z. Tan, K. N. Sharafudeen, Y. Z. Yue, J. R. Qiu. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci., 76, 154(2016).
[25] A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, J. Mitchell. Depressed cladding, buried waveguide laser formed in a YAG: Nd3+crystal by femtosecond laser writing. Opt. Lett., 30, 2248(2005).
[26] Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, A. K. Kar. Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt. Lett., 37, 3339(2012).
[27] Y. C. Jia, R. Y. He, J. R. Vázquez de Aldana, H. L. Liu, F. Chen. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Opt. Express, 27, 30941(2019).
[28] Y. Y. Ren, F. Chen, J. R. Vázquez de Aldana. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides. Opt. Express, 21, 11562(2013).
[29] J. Du, X. Y. Liang, Y. G. Wang, L. B. Su, W. W. Feng, E. W. Dai, Z. Z. Xu, J. Xu. 1 ps passively mode-locked laser operation of Na,Yb:CaF2 crystal. Opt. Express, 13, 7970(2005).
[30] L. B. Su, J. Xu, H. J. Li, W. Q. Yang, Z. Q. Zhao, J. L. Si, Y. J. Dong, G. Q. Zhou. Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal. Opt. Lett., 30, 1003(2005).
[31] J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Menard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, R. Moncorgé. Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions. J. Opt. Soc. Amer. B, 30, 3018(2013).
[32] S. Y. Pang, F. K. Ma, H. Yu, X. B. Qian, D. P. Jiang, Y. J. Wu, F. Zhang, J. Liu, J. Y. Xu, L. B. Su. Highly efficient continuous-wave laser operation of LD-pumped Nd,Gd:CaF2 and Nd,Y:CaF2 crystals. Laser Phys. Lett., 15, 055802(2018).
[33] T. Y. Guo, R. N. Li, L. F. Sun, Y. J. Cai, Y. Y. Ren, Y. C. Yao, M. D. Mackenzie, A. K. Kar. Femtosecond laser inscribed Pr:CaF2 waveguides: micro-spectroscopy characterizations and refractive index reconstruction. Opt. Commun., 461, 125243(2020).
[34] Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte. Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19. Phys. Rev. B, 51, 784(1995).
Get Citation
Copy Citation Text
Ruonan Li, Lifei Sun, Yangjian Cai, Yingying Ren, Hongliang Liu, Mark D. Mackenzie, Ajoy K. Kar, "Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd,Gd:CaF2 waveguides," Chin. Opt. Lett. 19, 081301 (2021)
Category: Integrated Optics
Received: Oct. 5, 2020
Accepted: Dec. 30, 2020
Published Online: Apr. 27, 2021
The Author Email: Yangjian Cai (yangjiancai@sdnu.edu.cn), Yingying Ren (ryywly@sdnu.edu.cn)