International Journal of Orthopaedics, Volume. 46, Issue 4, 215(2025)
Application progress of digital intelligence in knee osteoarthritis
[1] [1] Zhu S, Wang Z, Liang Q, et al. Chinese guidelines for the rehabilitation treatment of knee osteoarthritis: an CSPMR evidence-based practice guideline[J]. J Evid Based Med, 2023, 16(3): 376-393.
[3] [3] Adams SJ, Henderson RDE, Yi X, et al. Artificial intelligence solutions for analysis of X-ray images[J]. Can Assoc Radiol J, 2021, 72(1): 60-72.
[4] [4] Cohen I, Sorin V, Lekach R, et al. Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee[J]. Eur J Radiol, 2024, 175: 111460.
[5] [5] Abdullah SS, Rajasekaran MP. Automatic detection and classification of knee osteoarthritis using deep learning approach[J]. Radiol Med, 2022, 127(4): 398-406.
[6] [6] Khalid A, Senan EM, Al-Wagih K, et al. Hybrid techniques of X-ray analysis to predict knee osteoarthritis grades based on fusion features of CNN and handcrafted[J]. Diagnostics (Basel), 2023, 13(9): 1609.
[7] [7] Westbury LD, Fuggle NR, Pereira D, et al. Machine learning as an adjunct to expert observation in classification of radiographic knee osteoarthritis: findings from the Hertfordshire Cohort Study[J]. Aging Clin Exp Res, 2023, 35(7): 1449-1457.
[8] [8] Drevet S, Favier B, Lardy B, et al. New imaging tools for mouse models of osteoarthritis[J]. Geroscience, 2022, 44(2): 639-650.
[9] [9] Nowak S, Faron A, Luetkens JA, et al. Fully automated segmentation of connective tissue compartments for CT-based body composition analysis: a deep learning approach[J]. Invest Radiol, 2020, 55(6): 357-366.
[10] [10] Piccolo CL, Mallio CA, Vaccarino F, et al. Imaging of knee osteoarthritis: a review of multimodal diagnostic approach[J]. Quant Imaging Med Surg, 2023, 13(11): 7582-7595.
[11] [11] Panwar P, Chaurasia S, Gangrade J, et al. Optimizing knee osteoarthritis severity prediction on MRI images using deep stacking ensemble technique[J]. Sci Rep, 2024, 14(1): 26835.
[12] [12] Luo P, Lu L, Xu R, et al. Gaining insight into updated MR imaging for quantitative assessment of cartilage injury in knee osteoarthritis[J]. Curr Rheumatol Rep, 2024, 26(9): 311-320.
[13] [13] Zheng Z, He R, Lin C, et al. Multimodal magnetic resonance imaging to diagnose knee osteoarthritis under artificial intelligence[J]. Comput Intell Neurosci, 2022, 2022: 6488889.
[14] [14] Hu Y, Tang J, Zhao S, et al. Deep learning-based multimodal 3 T MRI for the diagnosis of knee osteoarthritis[J]. Comput Math Methods Med, 2022: 7643487.
[15] [15] Shah RF, Martinez AM, Pedoia V, et al. Variation in the thickness of knee cartilage. The use of a novel machine learning algorithm for cartilage segmentation of magnetic resonance images[J]. J Arthroplasty, 2019, 34(10): 2210-2215.
[16] [16] Paz-Gonzlez R, Balboa-Barreiro V, Lourido L, et al. Prognostic model to predict the incidence of radiographic knee osteoarthritis[J]. Ann Rheum Dis, 2024, 83(5): 661-668.
[17] [17] Du Y, Almajalid R, Shan J, et al. A novel method to predict knee osteoarthritis progression on MRI using machine learning methods[J]. IEEE Trans Nano Biosci, 2018, 17: 228-236.
[18] [18] Ntakolia C, Kokkotis C, Moustakidis S, et al. Prediction of joint space narrowing progression in knee osteoarthritisp patients[J]. Diagnostics (Basel), 2021, 11(2): 285.
[19] [19] Shen L, Yue S. A clinical model to predict the progression of knee osteoarthritis: data from dryad[J]. J Orthop Surg Res, 2023, 18(1): 628.
[20] [20] Li HB, Du YJ, Kenmegne GR, et al. Machine learning analysis of serum cholesterol's impact on knee osteoarthritis progression[J]. Sci Rep, 2024, 14(1): 18852.
[21] [21] Wang Y, You L, Chyr J, et al. Causal discovery in radiographic markers of knee osteoarthritis and prediction for knee osteoarthritis severity with attention-long short-term memory[J]. Front Public Health, 2020, 8: 604654.
[22] [22] Joo PY, Borjali A, Chen AF, et al. Defining and predicting radiographic knee osteoarthritis progression: a systematic review of findings from the osteoarthritis initiative[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(12): 4015-4028.
[23] [23] Chan LC, Li HHT, Chan PK, et al. A machine learning-based approach to decipher multi-etiology of knee osteoarthritis onset and deterioration[J]. Osteoarthr Cartil Open, 2021, 3(1): 100135.
[24] [24] Dossett HG, Deckey DG, Clarke HD, et al. Individualizing a total knee arthroplasty with three-dimensional planning[J]. J Am Acad Orthop Surg Glob Res Rev, 2024, 8(3): e24.00023.
[25] [25] Meng C, Yang S, Zhang Y, et al. Simulation of osteotomy in total knee arthroplasty with femoral extra-articular deformity assisted by artificial intelligence: a study based on three-dimensional models[J]. J Orthop Surg Res, 2024, 19(1): 641.
[26] [26] Lan Q, Li S, Zhang J, et al. Reliable prediction of implant size and axial alignment in AI-based 3D preoperative planning for total knee arthroplasty[J]. Sci Rep, 2024, 14(1): 16971.
[28] [28] Zhang W, Wan C, Zhang T, et al. Comprehensive application of high tibial osteotomy, chronic distraction tissue regeneration, and computer-assisted external fixation in the treatment of severe knee osteoarthritis: a case report[J]. Medicine (Baltimore), 2020, 99(4): e18636.
[29] [29] Adamska O, Modzelewski K, Szymczak J, et al. Robotic-assisted total knee arthroplasty utilizing NAVIO, CORI imageless systems and manual TKA accurately restore femoral rotational alignment and yield ssatisfactory clinical outcomes: arandomized controlled trial[J]. Medicina (Kaunas), 2023, 59(2): 236.
[30] [30] Ma N, Sun P, Xin P, et al. Comparison of the efficacy and safety of MAKO robot-assisted total knee arthroplasty versus conventional manual total knee arthroplasty in uncomplicated unilateral total knee arthroplasty a single-centre retrospective analysis[J]. Int Orthop, 2024, 48(9): 2351-2358.
[31] [31] Huang B, Huang Y, Ma X, et al. Intelligent algorithm-based magnetic resonance for evaluating the effect of platelet-rich plasma in the treatment of intractable pain of knee arthritis[J]. Contrast Media Mol Imaging, 2022, 2022: 9223928.
[32] [32] Palasantzas VEJM, Tamargo-Rubio I, Le K, et al. IPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies[J]. Trends Genet, 2023, 39(4): 268-284.
[33] [33] Mehta SJ, Hume E, Troxel AB, et al. Effect of remote monitoring on discharge to home, return to activity, and rehospitalization after hip and knee arthroplasty: a randomized clinical trial[J]. JAMA Netw Open, 2020, 3(12): e2028328.
[34] [34] Cafarelli A, Sorriento A, Marola G, et al. Usability assessment of technologies for remote monitoring of mnee osteoarthritis[J]. IEEE Open J Eng Med Biol, 2024, 5: 476-484.
[35] [35] Mehta SJ, Hume E, Troxel AB, et al. Effect of remote monitoring on discharge to home, return to activity, and rehospitalization after hip and knee arthroplasty: a randomized clinical trial[J]. JAMA Netw Open, 2020, 3(12): e2028328.
[37] [37] Booth MW, Riegler V, King JS, et al. Patients' perceptions of remote monitoring and app-based rehabilitation programs: acomparison of total hip and knee arthroplasty[J]. J Arthroplasty, 2023, 38(Suppl 7): S39-S43.
Get Citation
Copy Citation Text
SHANG He, LIANG Jinpeng, LI Jun, WANG Yi, WEI Yuan, CHEN Desheng. Application progress of digital intelligence in knee osteoarthritis[J]. International Journal of Orthopaedics, 2025, 46(4): 215
Category:
Received: Feb. 21, 2025
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: CHEN Desheng (charles_cds@163.com)