Chinese Optics, Volume. 15, Issue 2, 224(2022)

Luminescence enhancement mechanism of Er3+ ions by Ag@SiO2 core-shell nanostructure in tellurite glass

Xiao-bo CHEN1、*, Song LI1, Guo-ying ZHAO2, Hong-Zhen LIU3,4, Jing-hua GUO1, Yu MA2, Ke-zhi WANG5, and Zhu-feng GENG1
Author Affiliations
  • 1Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
  • 2School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
  • 3State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
  • 4School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 China
  • 5Chemistry College, Beijing Normal University, Beijing 100875, China
  • show less
    References(23)

    [1] XUE B, WANG D, ZHANG Y L, et al. Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles via a dye sensitization strategy[J]. Journal of Materials Chemistry C, 7, 8607-8615(2019).

    [2] LIN L, YU ZH P, WANG ZH ZH, et al. Plasmon-enhanced luminescence of Ag@SiO2/β-NaYF4: Tb3+ nanocomposites via absorption & emission matching[J]. Materials Chemistry and Physics, 220, 278-285(2018).

    [3] ZHAO G Y, XU L ZH, MENG SH H, et al. Facile preparation of plasmon enhanced near-infrared photoluminescence of Er3+-doped Bi2O3-B2O3-SiO2 glass for optical fiber amplifier[J]. Journal of Luminescence, 206, 164-168(2019).

    [4] PARK W, LU D W, AHN S M. Plasmon enhancement of luminescence upconversion[J]. Chemical Society Reviews, 44, 2940-2962(2015).

    [5] ZHAO J Y, CHENG Y Q, SHEN H M, et al. Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds[J]. Scientific Reports, 8, 3605(2018).

    [6] CHEN G X, DING CH J, WU E, et al. Tip-enhanced upconversion luminescence in Yb3+-Er3+ codoped NaYF4 nanocrystals[J]. The Journal of Physical Chemistry C, 119, 22604-22610(2015).

    [7] HE J J, ZHENG W, LIGMAJER F, et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2: Yb3+, Er3+ hybrid core-shell-satellite nanostructures[J]. Light:Science & Applications, 6, e16217(2017).

    [8] WANG D, XUE B, TU L P, et al. Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures[J]. Chinese Optics, 14, 418-430(2021).

    [9] YANG ZH, Ni W H, KOU X SH, et al. Incorporation of gold nanorods and their enhancement of fluorescence in mesostructured silica thin films[J]. The Journal of Physical Chemistry C, 112, 18895-18903(2008).

    [10] GEDDES C D, PARFENOV A, ROLL D, et al. Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities[J]. Journal of Fluorescence, 13, 267-276(2003).

    [11] WANG Q R, ZHANG J, SANG X, et al. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods[J]. Journal of Luminescence, 204, 284-288(2018).

    [12] XU W, LEE T K, MOON B S, et al. Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification[J]. Advanced Optical Materials, 6, 1701119(2018).

    [13] RAJESH D, DOUSTI M R, AMJAD R J, et al. Enhancement of down- and upconversion intensities in Er3+/Yb3+ co-doped oxyfluoro tellurite glasses induced by Ag species and nanoparticles[J]. Journal of Luminescence, 192, 250-255(2017).

    [14] DAS A, MAO CH CH, CHO S, et al. Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures[J]. Nature Communications, 9, 4828(2018).

    [15] FARES H, ELHOUICHET H, GELLOZ B, et al. Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: effect of heat treatment[J]. Journal of Applied Physics, 116, 123504(2014).

    [16] [16] XU G X. Rare Earth[M]. 2nd ed. Beijing: Metallurgical Industry Press, 1995. (in Chinese)

    [17] [17] GUO G C, JIN H CH, XIE J P. Optical Atomic Physics[M]. Hefei: China University of Science Technology Press, 1990. (in Chinese)

    [18] WANG Y SH, ZHANG X Q, ZHANG G Y, . The dependence of density and photostimulable cross section of F color centers in BaFCl: Eu2+ phosphors on temperature and UV-irradiation wavelength[J]. Chinese Journal of Luminescence, 17, 6-11(1996).

    [19] PENG H, YANG F, DU H, . Advances of Er3+ doped upconversion nanoparticles for biological imaging[J]. Chinese Journal of Analytical Chemistry, 49, 1106-1120(2021).

    [20] AN X T, WANG Y, MU J J, . Controllable synthesis and surface-enhanced upconversion luminescence of ultra-thin gold shell coated NaYF4: Yb, Er@SiO2 nanostructures[J]. Chinese Journal of Luminescence, 39, 1505-1512(2018).

    [21] HU J L, XUE D F. Research progress on the characteristics of rare earth ions and rare earth functional materials[J]. Chinese Journal of Applied Chemistry, 37, 245-255(2020).

    [22] LI Z J, AN X, NIU H, . Synthesis and spectral properties of NaYF4: Yb3+, Er3+ nanoparticles via thermolysis method[J]. Chinese Journal of Luminescence, 41, 1128-1136(2020).

    [23] ZHAO B J, ZHAO J B, QI X H, . Development of immunochromatographic strips based on covalently conjugated BHHCT-Eu3+@SiO2 for rapid and quantitative detection of kanamycin[J]. Chinese Journal of Analytical Chemistry, 45, 1467-1474(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xiao-bo CHEN, Song LI, Guo-ying ZHAO, Hong-Zhen LIU, Jing-hua GUO, Yu MA, Ke-zhi WANG, Zhu-feng GENG. Luminescence enhancement mechanism of Er3+ ions by Ag@SiO2 core-shell nanostructure in tellurite glass[J]. Chinese Optics, 2022, 15(2): 224

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Jul. 17, 2021

    Accepted: Nov. 18, 2021

    Published Online: Mar. 28, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0142

    Topics