Photonics Research, Volume. 5, Issue 5, 507(2017)

Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber

Hsuan-Yun Kao1, Yu-Chieh Chi1, Cheng-Ting Tsai1, Shan-Fong Leong1, Chun-Yen Peng1, Huai-Yung Wang1, Jian Jang Huang1, Jau-Ji Jou2, Tien-Tsorng Shih2, Hao-Chung Kuo3, Wood-Hi Cheng4, Chao-Hsin Wu1, and Gong-Ru Lin1、*
Author Affiliations
  • 1Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No.?1, Sect. 4, Roosevelt Rd, Taipei 10617, Taiwan
  • 2Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, No. 415, Chien Kung Rd, Sanmin District, Kaohsiung 80778, Taiwan
  • 3Graduate Institute of Electro-Optical Engineering, and Department of Photonics, National Chiao Tung University, No. 1001, University Rd, Hsinchu 30100, Taiwan
  • 4Graduate Institute of Optoelectronic Engineering, and Department of Electrical Engineering, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung 402, Taiwan
  • show less
    References(36)

    [1] [1] P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49 , 1021–1023 (2013).

    [2] [2] S. J. Trowbridge, “Ethernet and OTN—400G and beyond,” in Conference on Optical Fiber Communication , Los Angeles, California (2015), paper Th3H.1.

    [3] [3] P. Westbergh, J. S. Gustavsson, . Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15 , 694–703 (2009).

    [4] [4] P. Westbergh, J. S. Gustavsson, B. K gel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46 , 1014–1016 (2010).

    [5] [5] C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication , Anaheim, California (2016), paper Th4D.2.

    [6] [6] H. E. Li, and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

    [7] [7] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL,” in Conference on Optical Fiber Communication , San Francisco, California (2014), paper Th3C. 2.

    [8] [8] P. Westbergh, R. Safaisini, E. Haglund, B. K gel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48 , 1145–1147 (2012).

    [9] [9] A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21 , 645–647 (2009).

    [10] [10] H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication , Los Angeles, California (2017), paper Th2A.38.

    [11] [11] M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10 , 9–11 (1998).

    [12] [12] Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28 , 274–276 (1992).

    [13] [13] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4 , 841–846 (1989).

    [14] [14] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photon. Technol. Lett. 20 , 1121–1123 (2008).

    [15] [15] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication , Anaheim, California (2006), paper OFA4.

    [16] [16] W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55 μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18 , 424–426 (2006).

    [17] [17] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27 , 577–580 (2015).

    [18] [18] P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19 , 1702212 (2013).

    [19] [19] K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31 , 3525–3534 (2013).

    [20] [20] F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber,” in Conference on Optical Fiber Communication , San Diego, California (2008), paper OWB5.

    [21] [21] J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100 Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850 nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication , Dusseldorf, Germany (2016), paper Th.1.C.5.

    [22] [22] Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20 , 20071–20077 (2012).

    [23] [23] F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19 , 206–212 (2013).

    [24] [24] R. Puerta, J. J. V. Olmos, I. T. Monroy, N. N. Ledentsov, and J. P. Turkiewicz, “Flexible multiCAP modulation and its application to 850 nm VCSEL-MMF links,” J. Lightwave Technol. 35 , 3168–3173 (2017).

    [25] [25] I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21 , 444–452 (2015).

    [26] [26] P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001 , 9001103 (2014).

    [27] [27] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

    [28] [28] S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17 , 1576–1583 (2011).

    [29] [29] H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission,” Opt. Express 25 , 16347–16363 (2017).

    [30] [30] H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5 , 537–545 (1999).

    [31] [31] J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17 , 1593–1595 (2005).

    [32] [32] . Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42 , 231–240 (2006).

    [33] [33] M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22 , 15724–15736 (2014).

    [34] [34] L. A. Coldren, and S. W. Corzine, Diode Laser and Photonic Integrated Circuits (Wiley, 1995).

    [35] [35] E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C.-C. Hasnain, and M.-C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16 , 6609–6618 (2008).

    [36] [36] W. Shieh, and I. Djordjevic, OFDM for Optical Communications (Academic, 2009).

    CLP Journals

    [1] Kai Liu, Huize Fan, Yongqing Huang, Xiaofeng Duan, Qi Wang, Xiaomin Ren, Qi Wei, Shiwei Cai, "A pair of integrated optoelectronic transceiving chips for optical interconnects," Chin. Opt. Lett. 16, 091301 (2018)

    Tools

    Get Citation

    Copy Citation Text

    Hsuan-Yun Kao, Yu-Chieh Chi, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Huai-Yung Wang, Jian Jang Huang, Jau-Ji Jou, Tien-Tsorng Shih, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, Gong-Ru Lin, "Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber," Photonics Res. 5, 507 (2017)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: May. 31, 2017

    Accepted: Aug. 3, 2017

    Published Online: Jan. 10, 2019

    The Author Email: Gong-Ru Lin (grlin@ntu.edu.tw)

    DOI:10.1364/prj.5.000507

    Topics