Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1672(2025)

Challenge and Solution of Garnet Oxide Solid Electrolyte for All-Solid-State Lithium Battery

MA Xiaojun, ZHAO Ning*, and GUO Xiangxin
Author Affiliations
  • College of Physics, Qingdao University, Qingdao 266071, Shandong, China
  • show less
    References(81)

    [1] [1] CHEN Y, WEN K H, CHEN T H, et al. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces[J]. Energy Storage Mater, 2020, 31: 401–433.

    [4] [4] HU L, REN Y L, WANG C W, et al. Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte[J]. Adv Mater, 2024, 36(29): e2401909.

    [6] [6] LIANG H M, WANG L, WANG A P, et al. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: A review[J]. Nanomicro Lett, 2023, 15(1): 42.

    [7] [7] XIAO P T, YUN X R, CHEN Y F, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Soc Rev, 2023, 52(15): 5255–5316.

    [10] [10] YOU Y W, ZHANG D X, CAO X R, et al. Exploring high-valence element doping in LLZO electrolytes: Effects on phase transition and lithium-ion conductivity[J]. J Power Sources, 2024, 612: 234831.

    [11] [11] LI X Y, ZHOU Y J, TANG J W, et al. Optimizing Li1.3Al0.3Ti1.7(PO4)3 particle sizes toward high ionic conductivity[J]. ACS Appl Mater Interfaces, 2023, 15(30): 36289–36300.

    [12] [12] LUO C W, YI M, CAO Z J, et al. Review of ionic conductivity properties of NASICON type inorganic solid electrolyte LATP[J]. ACS Appl Electron Mater, 2024, 6(2): 641–657.

    [13] [13] ZHU X, LU P S, WU D X, et al. Experimental corroboration of lithium orthothioborate superionic conductor by systematic elemental manipulation[J]. Nano Lett, 2023, 23(22): 10290–10296.

    [15] [15] SONG Z Y, WANG T R, DAI Y M, et al. A sintering-free cathode for garnet-based all-solid-state Li metal batteries[J]. Adv Energy Mater, 2024, 14(20): 2304543.

    [16] [16] SUN X L. VIGLAS: A novel solution for inorganic solid-state batteries[J]. Sci Bull, 2023, 68(22): 2682–2683.

    [17] [17] YANG Q H, KONG D T, FU L, et al. Investigation on the mechanical integrity of a PEO-based polymer electrolyte in all-solid-state lithium batteries[J]. Phys Chem Chem Phys, 2024, 26(10): 8125–8140.

    [18] [18] WANG Z, TAN J W, CUI J W, et al. A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries[J]. J Mater Chem A, 2024, 12(7): 4231–4239.

    [19] [19] LIU F Q, GAO L, ZHANG Z P, et al. Interfacial Challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes[J]. Energy Storage Mater, 2024, 64: 103072.

    [20] [20] ZHANG Q W, YANG R, LI C, et al.In-situcoupling construction of interface bridge to enhance electrochemical stability of all solid-state lithium metal batteries[J]. J Energy Chem, 2024, 89: 18–26.

    [21] [21] JIE Y L, WANG S Y, WENG S T, et al. Towards long-life 500 Wh kg–1 lithium metal pouch cellsviacompact ion-pair aggregate electrolytes[J]. Nat Energy, 2024, 9(8): 987–998.

    [23] [23] CHEN Y Y, OUYANG B, LI X B, et al. Gradient nitrogen doping in the garnet electrolyte for highly efficient solid-state-electrolyte/Li interface by N2 plasma[J]. ACS Appl Mater Interfaces, 2023, 15(38): 44962–44973.

    [24] [24] JI W X, ZHANG X X, ZHENG D, et al. Practically accessible all-solid-state batteries enabled by organosulfide cathodes and sulfide electrolytes[J]. Adv Funct Materials, 2022, 32(27): 2202919.

    [25] [25] LI P Y, WANG S Y, HAO J J, et al. Efficiencies of variousin situpolymerizations of liquid electrolytes and the practical implications for quasi solid-state batteries[J]. Angew Chem Int Ed, 2023, 62(38): e202309613.

    [26] [26] TONG R A, HUANG Y L, FENG C, et al.In-situpolymerization confined PEGDME-based composite quasi-solid-state electrolytes for lithium metal batteries[J]. Adv Funct Mater, 2024, 34(30): 2315777.

    [27] [27] CARENA E, MEZZOMO L, VALLANA N, et al. PVDF-HFP based, quasi-solid nanocomposite electrolytes for lithium metal batteries[J]. Small, 2024, 20(30): 2311805.

    [28] [28] XU Y N, WANG K, ZHANG X D, et al. Improved Li-ion conduction and (electro)chemical stability at garnet–polymer interface through metal-nitrogen bonding[J]. Adv Energy Mater, 2023, 13(14): 2204377.

    [29] [29] HE M H, CUI Z H, HAN F, et al. Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries[J]. J Alloys Compd, 2018, 762: 157–162.

    [30] [30] MA X J, MAO D X, XIN W K, et al. Flexible composite electrolyte membranes with fast ion transport channels for solid-state lithium batteries[J]. Polymers, 2024, 16(5): 565.

    [31] [31] LV R X, KOU W J, GUO S Y, et al. Preparing two-dimensional ordered Li0.33La0.557TiO3 crystal in interlayer channel of thin laminar inorganic solid-state electrolyte towards ultrafast Li+ transfer[J]. Angew Chem Int Ed, 2022, 61(7): e202114220.

    [32] [32] YAO Z R, ZHU K J, ZHANG J, et al. LiF-assisted synthesis of perovskite-type Li0.35La0.55TiO3 solid electrolyte for rechargeable lithium-metal batteries[J]. J Electron Mater, 2022, 51(2): 736–744.

    [33] [33] CHATTERJEE A, GANGULY D, SUNDARA R, et al. High-entropy cubic perovskite oxide-based solid electrolyte in quasi-solid-state Li–S battery[J]. Energy Technol, 2024, 12(1): 2300576.

    [34] [34] GO W, PARKINSON D Y, OROPEZA D, et al. Scalable surface micro-texturing of LLZO solid electrolytes for battery applications[J]. ACS Energy Lett, 2024, 9(6): 2867–2875.

    [35] [35] WANG Y Z, LIU S Q, GUO X W, et al. Elements gradient doping in Mn-based Li-rich layered oxides for long-life lithium-ion batteries[J]. J Mater Sci Technol, 2025, 207: 266–273.

    [36] [36] GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nat Electron, 2018, 1: 204.

    [37] [37] SONG Y X, SU M, XIANG H Y, et al. PEO-based solid-state polymer electrolytes for wide-temperature solid-state lithium metal batteries[J]. Small, 2025, 21(3): 2408045.

    [38] [38] ZOU S H, YANG Y, WANG J R, et al.In situpolymerization of solid-state polymer electrolytes for lithium metal batteries: A review[J]. Energy Environ Sci, 2024, 17(13): 4426–4460.

    [39] [39] LI S H, CHEN B L, SHI Z Y, et al. Optimizing strategies for high Li+ transference number in solid state electrolytes for lithium batteries: A review[J]. J Energy Storage, 2024, 102: 114210.

    [40] [40] ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. J Am Chem Soc, 2017, 139(39): 13779–13785.

    [41] [41] CHENG L, CRUMLIN E J, CHEN W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes[J]. Phys Chem Chem Phys, 2014, 16(34): 18294–18300.

    [42] [42] SU D L, CUI J, ZHAI P B, et al. Mechanism Study on Garnet-type Li Regulating the Solid Electrolyte Interphases of Si/C Anodes[J]. 2022, 37(7): 802–808.

    [43] [43] MA J, JIANG Y D, CHEN W Y, et al. A low-cost Al-doped garnet Li7La3Zr2O12 with high ionic conductivity for high-energy solid-state lithium metal batteries[J]. 2022, 121(19): 193901.

    [44] [44] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12)[J]. Angew Chem Int Ed, 2007, 46(41): 7778–7781.

    [45] [45] LU W Z, WANG T, XUE M Z, et al. Improved Li6.5La3Zr1.5Nb0.5O12 electrolyte and effects of atmosphere exposure on conductivities[J]. J Power Sources, 2021, 497: 229845.

    [46] [46] GUO J Z, CHAN C K. Lithium dendrite propagation in Ta-doped Li7La3Zr2O12 (LLZTO): Comparison of reactively sintered pyrochlore-to-garnetvsLLZTO by solid-state reaction and conventional sintering[J]. ACS Appl Mater Interfaces, 2024, 16(4): 4519–4529.

    [47] [47] QIN S Y, ZHU X H, JIANG Y, et al. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity[J]. 2018, 112(11): 113901.

    [48] [48] JIA M Y, BI Z J, SHI C, et al. Air-stable dopamine-treated garnet ceramic particles for high-performance composite electrolytes[J]. J Power Sources, 2021, 486: 229363.

    [49] [49] KUO C H, WANG A Y, LIU H Y, et al. A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries[J]. 2022, 10(12): 121104.

    [50] [50] ANDERSON E, ZOLFAGHAR E, JONDERIAN A, et al. Comprehensive dopant screening in Li7La3Zr2O12 garnet solid electrolyte[J]. Adv Energy Mater, 2024, 14(20): 2304025.

    [51] [51] VEMA S, BERGE A H, NAGENDRAN S, et al. Clarifying the dopant local structure and effect on ionic conductivity in garnet solid-state electrolytes for lithium-ion batteries[J]. Chem Mater, 2023, 35(22): 9632–9646.

    [52] [52] FENG Y T, YANG L, YAN Z H, et al. Discovery of high entropy garnet solid-state electrolytesviaultrafast synthesis[J]. Energy Storage Mater, 2023, 63: 103053.

    [53] [53] XIANG X, FANG Z C, CHEN F, et al. Crystal structure of cubic Li7–3xGaxLa3Zr2O12 with space group of I–43d[J]. Ceram Int, 2022, 48(7): 9371–9377.

    [54] [54] ZHOU X R, HUANG L W, ELKEDIM O, et al. Sr2+ and Mo6+ Co-doped Li7La3Zr2O12 with superior ionic conductivity[J]. J Alloys Compd, 2022, 891: 161906.

    [55] [55] AMARDEEP, KOBI S, MUKHOPADHYAY A. Mg-doping towards enhancing the composition-phase-structural stability of Li–La–zirconate based cubic garnet upon exposure to air[J]. Scr Mater, 2019, 162: 214–218.

    [56] [56] NING Z Y, LI G C, MELVIN D L R, et al. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature, 2023, 618(7964): 287–293.

    [57] [57] ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23): 8790–8839.

    [58] [58] LI B, WANG C H, YU R Z, et al. Recent progress on metal–organic framework/polymer composite electrolytes for solid-state lithium metal batteries: Ion transport regulation and interface engineering[J]. Energy Environ Sci, 2024, 17(5): 1854–1884.

    [59] [59] LIAO Y K, TONG Z Z, LIU S N, et al. Spontaneousin situformation of lithium metal nitride in the interface of garnet-type solid-state electrolyte by tuning of molten lithium[J]. ACS Appl Mater Interfaces, 2023.

    [60] [60] YE R J, TSAI C L, IHRIG M, et al. Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries[J]. Green Chem, 2020, 22(15): 4952–4961.

    [61] [61] UMESH S, JAYARAMAN V K, PRAKASH A S. Elucidating the importance of quaternary dopants in stabilizing cubic LLZO at low temperature[J]. J Phys Chem C, 2024, 128(3): 985–993.

    [62] [62] JAYARAMAN V K, POROB D G, PRAKASH A S. Misconception in the analysis of tetragonal Li7La3Zr2O12 garnet[J]. ACS Appl Energy Mater, 2023, 6(22): 11442–11447.

    [63] [63] AWAKA J, TAKASHIMA A, KATAOKA K, et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12[J]. Chem Lett, 2011, 40(1): 60–62.

    [64] [64] THOMPSON T, YU S, WILLIAMS L, et al. Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12[J]. ACS Energy Lett, 2017, 2(2): 462–468.

    [65] [65] CANEPA P, DAWSON J A, SAI GAUTAM G, et al. Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte[J]. Chem Mater, 2018, 30(9): 3019–3027.

    [66] [66] HUANG L, GAO J, BI Z J, et al. Comparative study of stability against moisture for solid garnet electrolytes with different dopants[J]. Energies, 2022, 15(9): 3206.

    [67] [67] HUO H Y, CHEN Y, ZHAO N, et al.In-situformed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119–125.

    [68] [68] WANG N, JIA M Y, BI Z J, et al. Composite electrolytes with Li2CO3-free garnets achieved by one-step poly(propylene carbonate) treatment for high-rate and long-life solid lithium batteries[J]. Adv Funct Materials, 2024, 34(36): 2401400.

    [69] [69] BI Z J, SUN Q F, JIA M Y, et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries[J]. Adv Funct Materials, 2022, 32(52): 2208751.

    [71] [71] HUO H Y, LI X N, SUN Y P, et al. Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries[J]. Nano Energy, 2020, 73: 104836.

    [72] [72] YOON K, LEE S, OH K, et al. Challenges and strategies towards practically feasible solid-state lithium metal batteries[J]. Adv Mater, 2022, 34(4): e2104666.

    [73] [73] DIXIT M B, VISHUGOPI B S, ZAMAN W, et al. Polymorphism of garnet solid electrolytes and its implications for grain-level chemo-mechanics[J]. Nat Mater, 2022, 21(11): 1298–1305.

    [74] [74] RAJ V, VENTURI V, KANKANALLU V R, et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers[J]. Nat Mater, 2022, 21(9): 1050–1056.

    [75] [75] LIU X M, GARCIA-MENDEZ R, LUPINI A R, et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes[J]. Nat Mater, 2021, 20(11): 1485–1490.

    [76] [76] HUO H Y, CHEN Y, LI R Y, et al. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries[J]. Energy Environ Sci, 2020, 13(1): 127–134.

    [77] [77] GAO J, ZHU J X, LI X L, et al. Rational design of mixed electronic-ionic conducting Ti-doping Li7La3Zr2O12 for lithium dendrites suppression[J]. Adv Funct Mater, 2021, 31(2): 2001918.

    [78] [78] BI Z J, SHI R D, LIU X N, et al.In situconversion reaction triggered Alloy@Antiperovskite hybrid layers for lithiophilic and robust lithium/garnet interfaces[J]. Adv Funct Mater, 2023, 33(43): 2307701.

    [79] [79] HUO H Y, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nat Commun, 2021, 12(1): 176.

    [80] [80] JI W J, LUO B, WANG Q, et al. Interface engineering enabling thin lithium metal electrodes down to 0.78 m for garnet-type solid-state batteries[J]. Nat Commun, 2024, 15(1): 9920.

    [81] [81] BALAISH M, GONZALEZ-ROSILLO J C, KIM K J, et al. Processing thin but robust electrolytes for solid-state batteries[J]. Nat Energy, 2021, 6: 227–239.

    [82] [82] SUN F R, YANG Y B, ZHAO S, et al. Local Li+ framework regulation of a garnet-type solid-state electrolyte[J]. ACS Energy Lett, 2022, 7(8): 2835–2844.

    [83] [83] CHEN S J, NIE L, HU X C, et al. Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries[J]. Adv Mater, 2022, 34(33): 2200430.

    [84] [84] ABRHA L H, HAGOS T T, NIKODIMOS Y, et al. Dual-doped cubic garnet solid electrolytes with superior air stability[J]. ACS Appl Mater Interfaces, 2020, 12(23): 25709–25717.

    [85] [85] WU J N, LU Y, WU H C, et al. Preparation and electrochemical properties of LLZO co-doping with Al and Ti for all solid-state battery[J]. J Solid State Electrochem, 2023, 27(9): 2499–2507.

    [86] [86] ZHAI P B, YANG Z L, WEI Y, et al. Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries[J]. Adv Energy Mater, 2022, 12(42): 2200967.

    [87] [87] ZHANG H, AN X Y, YANG Y L, et al. Vertical aligned solid-state electrolyte templated by nanostructured “upright” cellulose film layers for advanced cell performance[J]. EcoMat, 2023, 5(4): e12317.

    [88] [88] BUNYANIDHI P, PHATTHARASUPAKUN N, TOMON C, et al. Mechanofusing garnet solid electrolyte on the surface of Ni-rich layered oxide cathode towards high-rate capability of cylindrical Li-ion battery cells[J]. J Power Sources, 2022, 549: 232043.

    [89] [89] OH J, SHIN D O, LEE M J, et al. Enhancing performance of all-solid-state battery by establishment of interconnected Li7La3Zr2O12 network in graphite composite anode[J]. J Energy Storage, 2023, 68: 107761.

    Tools

    Get Citation

    Copy Citation Text

    MA Xiaojun, ZHAO Ning, GUO Xiangxin. Challenge and Solution of Garnet Oxide Solid Electrolyte for All-Solid-State Lithium Battery[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1672

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 2, 2025

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email: ZHAO Ning (n.zhao@qdu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20250006

    Topics