Optics and Precision Engineering, Volume. 31, Issue 19, 2884(2023)

Mask generation dynamically regulates weakly supervised video instance segmentation

Zifen HE, Lin XU, Yinhui ZHANG*, and Ying HUANG
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming650500, China
  • show less
    Figures & Tables(16)
    Structure of WSVIS network
    Structure of MFF module
    Dynamic control mechanism
    Consistency images of instance bounding box and mask area
    Flow chart for binary color similarity loss calculation
    Pixel sampling diagram
    Video segmented results
    Heat map comparison
    • Table 1. Training parameter settings

      View table
      View in Article

      Table 1. Training parameter settings

      超参数及学习策略
      图像输入尺寸360×640
      Batch Size4
      动量0.9
      迭代步数Boxset:23 000,YT-VIS:190 000
      学习率0.005
    • Table 2. Comparison of experiment results for different video instance segmentation networks

      View table
      View in Article

      Table 2. Comparison of experiment results for different video instance segmentation networks

      MethodsBoxSetYT-VIS1
      APAP50AP75AR1AR10APAP50AP75AR1AR10
      Sipmask2136.261.834.238.541.432.553.033.333.538.9
      STMask2237.561.038.639.342.933.552.136.931.139.2
      CrossVIS2339.964.141.541.046.734.854.637.934.039.0
      FlowIRN1210.527.26.212.313.6
      FlowSimi1429.050.229.4
      WSVIS37.564.740.037.842.530.150.531.231.137.0
    • Table 3. 和的有效性验证

      View table
      View in Article

      Table 3. 和的有效性验证

      LbmLpairAPAP50AP75AR1AR10
      23.755.420.725.627.9
      22.554.118.724.326.7
      32.960.332.835.639.2
    • Table 4. Effectiveness verification of MFF module

      View table
      View in Article

      Table 4. Effectiveness verification of MFF module

      MFFAPAP50AP75AR1AR10
      32.960.332.835.639.2
      36.364.735.137.742.4
    • Table 5. MFF模块不同级、层不同的卷积实验结果

      View table
      View in Article

      Table 5. MFF模块不同级、层不同的卷积实验结果

      卷积层级APAP50AP75AR1AR10
      Conv 332.659.832.534.439.4
      Conv 433.762.536.235.639.2
      Conv 534.863.436.836.040.1
      CondConv27 334.362.533.837.540.7
      CondConv27 435.669.537.137.041.0
      CondConv27 536.364.735.137.742.4
    • Table 6. Effectiveness verification of dynamic regulation mechanism

      View table
      View in Article

      Table 6. Effectiveness verification of dynamic regulation mechanism

      动态调控机制APAP50AP75AR1AR10
      36.364.735.137.742.4
      37.564.740.037.842.5
    • Table 7. Results of cross frame interval comparison experiment

      View table
      View in Article

      Table 7. Results of cross frame interval comparison experiment

      Cross15101520253035
      34.334.634.934.334.634.634.034.1
      35.135.436.236.337.536.236.235.8
    • Table 8. Comparison of model complexity and inference speed of different networks

      View table
      View in Article

      Table 8. Comparison of model complexity and inference speed of different networks

      NetworkSizeParam(M)FLOPs(G)FPS
      Sipmask21384×64032.75226.6230.0
      STMask22384×64036.79521.4628.6
      CrossVIS23360×6408.37153.3339.8
      WSVIS360×6408.59159.9434.4
    Tools

    Get Citation

    Copy Citation Text

    Zifen HE, Lin XU, Yinhui ZHANG, Ying HUANG. Mask generation dynamically regulates weakly supervised video instance segmentation[J]. Optics and Precision Engineering, 2023, 31(19): 2884

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 6, 2023

    Accepted: --

    Published Online: Mar. 18, 2024

    The Author Email: Yinhui ZHANG (zyhhzf1998@163.com)

    DOI:10.37188/OPE.20233119.2884

    Topics