Journal of Synthetic Crystals, Volume. 51, Issue 2, 222(2022)
Analysis of Channel Temperature in GaN on Diamond HEMT:Effect of Anisotropic and Inhomogeneous Thermal Conductivity
[1] [1] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664.
[2] [2] SOOD A, CHO J, HOBART K D, et al. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond[J]. Journal of Applied Physics, 2016, 119(17): 175103.
[3] [3] GRAEBNER J E, JIN S, KAMMLOTT G W, et al. Large anisotropic thermal conductivity in synthetic diamond films[J]. Nature, 1992, 359(6394): 401-403.
[4] [4] ANAYA J, ROSSI S, ALOMARI M, et al. Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties[J]. Acta Materialia, 2016, 103: 141-152.
[5] [5] CHENG Z, BOUGHER T, BAI T, et al. Probing growth-induced anisotropic thermal transport in high-quality CVD diamond membranes by multifrequency and multiple-spot-size time-domain thermoreflectance[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4808-4815.
[6] [6] SONG C, KIM J, LEE H, et al. Fundamental limits for near-junction conduction cooling of high power GaN-on-diamond devices[J]. Solid State Communications, 2019, 295: 12-15.
[7] [7] ZOU B, SUN H R, GUO H X, et al. Thermal characteristics of GaN-on-diamond HEMTs: impact of anisotropic and inhomogeneous thermal conductivity of polycrystalline diamond[J]. Diamond and Related Materials, 2019, 95: 28-35.
[8] [8] DARWISH A M, BAYBA A J, HUNG H A. Thermal resistance calculation of AlGaN-GaN devices[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(11): 2611-2620.
[9] [9] DARWISH A M, BAYBA A J, KHORSHID A, et al. Calculation of the nonlinear junction temperature for semiconductor devices using linear temperature values[J]. IEEE Transactions on Electron Devices, 2012, 59(8): 2123-2128.
[10] [10] DARWISH A, BAYBA A J, HUNG H A. Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity[J]. IEEE Transactions on Electron Devices, 2015, 62(3): 840-846.
[11] [11] LI W, MINGO N, LINDSAY L, et al. Thermal conductivity of diamond nanowires from first principles[J]. Physical Review B, 2012, 85(19): 195436.
[12] [12] DONG H C, WEN B, MELNIK R. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials[J]. Scientific Reports, 2014, 4: 7037.
[13] [13] LI Y, ZHENG Z X, ZHANG C, et al. Effect of GaN-on-diamond integration technology on its thermal properties[J]. Semiconductor Science and Technology, 2021, 36(10): 105001.
Get Citation
Copy Citation Text
LI Yao, ZHENG Zixuan, PU Hongbin. Analysis of Channel Temperature in GaN on Diamond HEMT:Effect of Anisotropic and Inhomogeneous Thermal Conductivity[J]. Journal of Synthetic Crystals, 2022, 51(2): 222
Category:
Received: Oct. 25, 2021
Accepted: --
Published Online: Mar. 24, 2022
The Author Email:
CSTR:32186.14.