Journal of Infrared and Millimeter Waves, Volume. 44, Issue 3, 327(2025)

Research on the punch-through phenomenon of separate absorption, charge and multiplication avalanche photodetectors

Chong LI1、*, Zi-Yi MA1, Shuai YANG1, Yue-Wen LIU1, Jia-Xuan WANG1, Yun-Fei LIU2, Yu-Sen DONG1, Zi-Qian LI1, and Dian-Bo LIU1
Author Affiliations
  • 1Key Laboratory of Optoelectronics Technology of Ministry of Education, School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China
  • 2Institute of Advanced Semiconductor Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    References(31)

    [1] CHIANG C C, HO W J, LIU J J et al. Fabrication and characterization of planar-type top-illuminated high-responsivity InP-based avalanche photodetector for 10 Gbps optical receiver applications[C](2018).

    [2] ZHAO Y L. Impact ionization in absorption, grading, charge, and multiplication layers of InP/InGaAs SAGCM APDs with a thick charge layer[J]. IEEE Transactions on Electron Devices, 60, 3493-3499(2013).

    [3] KASPER B L, CAMPBELL J C. Multigigabit-per-second avalanche photodiode lightwave receivers[J]. Journal of Lightwave Technology, 5, 1351-1364(1987).

    [4] IZHNIN I I, LOZOVOY K A, KOKHANENKO A et al. Single-photon avalanche diode detectors based on group IV materials[J]. Applied Nanoscience, 12, 253-263(2022).

    [5] PARK B, PARK I, CHOI W et al. A 64×64 APD-based ToF image sensor with background light suppression up to 200 klx using in-pixel auto-zeroing and chopping[J]. IEEE Journal of Solid-State Circuits, 54, 1-10(2019).

    [6] AHMAD Z, KUO S I, CHANG Y C et al. Avalanche photodiodes with dual multiplication layers and ultra-high responsivity-bandwidth products for FMCW lidar system applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1(2021).

    [7] LIANG Y, XU B, FEI Q et al. Low-timing-jitter GHz-gated InGaAs/InP single-photon avalanche photodiode for LIDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-7(2021).

    [8] LU C, WU K, CAO Y et al. Monolithic coherent LABS lidar based on an integrated transceiver array[J]. Optics Letters, 47, 1-4(2022).

    [9] AMÉLIE P, PAUWELS J, HÅKANSSON E et al. Entanglement-assisted quantum communication with simple measurements[J]. Nature Communications, 13, 1-10(2022).

    [10] COUTEAU C, BARZ S, DURT T et al. Applications of single photons to quantum communication and computing[J]. Nature Reviews Physics, 5, 326-338(2023).

    [11] LOVE A C, CALDWELL D R, KOLBABA-KARTCHNER B et al. Redshifted coumarin luciferins for improved bioluminescence imaging[J]. Journal of the American Chemical Society, 145, 3335-3345(2023).

    [12] PEREIRA J M T. Frequency-response simulation analysis of InGaAs/InP SAM-APD devices[J]. Microwave and Optical Technology Letters, 48, 712-717(2010).

    [13] MURTAZA S S, ANSELM K A, HU C et al. Resonant-cavity enhanced (RCE) separate absorption and multiplication (SAM) avalanche photodetector (APD)[J]. IEEE Photonics Technology Letters, 7, 1486-1488(2002).

    [14] ZHANG J, YAO E, KE S Y. Optimal design of charge-free layer InGaAs/Si avalanche photodetector[J]. Acta Optica Sinica, 44, 0504001(2024).

    [15] CHEN W S, WANG H B, TAO J et al. A study on the epitaxial structure and characteristics of high-efficiency blue silicon photodetectors[J]. Chinese Optics, 15, 568-591(2022).

    [16] LIU W, SHI Z, GAO J. Enhanced initial photocurrent caused by the multiplication process at punch-through voltage in InGaAs/InP avalanche photodiode with highly doped charge layer[J]. Infrared Physics & Technology, 124, 104218(2022).

    [17] ZHAO H L, PENG H L, ZHOU X Y et al. Structural design of dual carrier multiplication avalanche photodiodes on InP substrate[J]. Acta Physica Sinica, 72, 285-291(2023).

    [18] YANG S, ZHOU D, CAI X et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger mode[J]. IEEE Transactions on Electron Devices, 64, 1-8(2017).

    [19] NISHIGUCHI K, NAKATA K, HASHIZUME T. A numerical modeling of the frequency dependence of the capacitance-voltage and conductance-voltage characteristics of GaN MIS structures[J]. Journal of Applied Physics, 132, 112198(2022).

    [20] ZHENG J, XUE X, YUAN Y et al. Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch[J]. Nature Communications, 13, 1517(2022).

    [21] NASEEM A, ZOHAUDDIN, AHMAD Z et al. Avalanche photodiodes with composite charge-layers for low dark current, high-speed, and high-power performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-10(2022).

    [22] YI L K, LIU D Q, LI D M et al. Waveguide-integrated Ge/Si avalanche photodiode with vertical multiplication region for 1 310 nm detection[J]. Photonics, 10, 750(2023).

    [23] LEE S, JIN X, JUNG H et al. High gain, low noise 1 550 nm GaAsSb/AlGaAsSb avalanche photodiodes[J]. Optica, 10, 147-154(2023).

    [24] GAO L, ZHANG N, YOU J et al. Broadband and ultra-high-sensitivity separate absorption-multiplication avalanche phototransistor based on a Au-WSe2-Ge heterostructure[J]. ACS Photonics, 10, 4349-4356(2023).

    [25] LI Z W, CAO X X, ZHANG Z X et al. Multilayer graphene/epitaxial silicon near-infrared self-quenched avalanche photodetectors[J]. Advanced Optical Materials, 12, 2302900(2024).

    [26] CAI Q, LUO W K, GUO H et al. Direct observation of reach-through behavior in back-illuminated AlGaN avalanche photodiode with separate absorption and multiplication structure[J]. Journal of Physics D: Applied Physics, 53, 425101(2020).

    [27] CAI X L, ZHOU D, CHENG L et al. Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses[J]. Chinese Physics B, 28, 098503(2019).

    [28] CHENG C J, SI J J, ZHANG X F et al. Capacitance characteristics of back-illuminated Al0.42Ga0.58N/Al0.40 Ga0.60N heterojunction p-i-n solar-blind UV photodiode[J]. Applied Physics Letters, 91, 253510(2007).

    [29] SZE S M[M]. Physics of Semiconductor Devices, 34-35(2008).

    [30] GOPAL V, PLIS E, RODRIGUEZ J B et al. Modeling of electrical characteristics of midwave type II InAs/GaSb strain layer superlattice diodes[J]. Journal of Applied Physics, 104, 124506(2008).

    [31] SUN W, LU Z, ZHENG X et al. High-gain InAs avalanche photodiodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 49, 154-161(2012).

    Tools

    Get Citation

    Copy Citation Text

    Chong LI, Zi-Yi MA, Shuai YANG, Yue-Wen LIU, Jia-Xuan WANG, Yun-Fei LIU, Yu-Sen DONG, Zi-Qian LI, Dian-Bo LIU. Research on the punch-through phenomenon of separate absorption, charge and multiplication avalanche photodetectors[J]. Journal of Infrared and Millimeter Waves, 2025, 44(3): 327

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared Physics, Materials and Devices

    Received: Sep. 10, 2024

    Accepted: --

    Published Online: Jul. 9, 2025

    The Author Email: Chong LI (lichong@bjut.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2025.03.001

    Topics