Chinese Optics, Volume. 18, Issue 3, 704(2025)

Analysis of multi-factor influences of tilt-to-length coupling noise in a test mass interferometer

Meng-yuan ZHAO1,2, Jia SHEN3,4, Xiao-dong PENG2,5,6,7, Xiao-shan MA8、*, Zhen YANG2, He-shan LIU3, Xin MENG2, and Jia-feng ZHANG2,4
Author Affiliations
  • 1School of Information, Xi'an University of Finance and Economics, Xi'an 710100, China
  • 2Key Laboratory of Electronics and Information Technology for Space System, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 3Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Taiji Laboratory for Gravitational Wave Universe, Hangzhou 310024, China
  • 6Key Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province, Hangzhou 310024, China
  • 7School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
  • 8Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    Figures & Tables(14)
    Schematic diagram of the simulated optical bench for the test mass interferometer
    Schematic illustration of positional factors. (a) The offset between the measurement and reference beam; (b) the piston effect; (c) the test mass shift and rotation
    Schematic diagram of the experimental setup. Components included: acousto-optical modulator (AOM), polarizing beam splitter (PBS), half wave plate (λ/2), quarter wave plate (λ/4), beam splitter (BS), stationary mirror (Ref M), fine steering mirror (FSM)
    Comparison of experimental data and simulation data
    Histograms of LPS with LPF and AP definitions in 10,000 simulations
    Visualization of the main effect index (S1) for the LPF definition
    Visualization of the total effect index (ST) for the AP definition
    • Table 1. The type, position, and orientation of each component in the simulated optical bench used to analyze TTL coupling

      View table
      View in Article

      Table 1. The type, position, and orientation of each component in the simulated optical bench used to analyze TTL coupling

      LabelComponent NameCenter coordinatecmNormal Vector
      LaserLaser(0,0,0)(1,0,0)
      BSBeam splitter(25,0,0)(−1,0,0)
      MMirror(25,50,0)(0,−1,0)
      TMTest mass(50,0,0)(1,0,0)
      QPDQuadrant photodiode(25,-25,0)(0,1,0)
    • Table 2. Physical parameters list

      View table
      View in Article

      Table 2. Physical parameters list

      Parameter descriptionValue
      Reference beam waist0.5 mm
      Distance from reference beam waist0
      Reference beam frequency2.8195×108 MHz +120 MHz
      Measurement beam waist0.5 mm
      Distance from measurement beam waist0 mm
      Measurement beam frequency2.8195×108 MHz +120 MHz+1.6 MHz
      QPD radius1 cm
      QPD slit size50 µm
    • Table 3. Comparison of rotation angle (µrad) and relative error (%)

      View table
      View in Article

      Table 3. Comparison of rotation angle (µrad) and relative error (%)

      Rotation angle (µrad)Relative error (%)
      1003.78
      2002.84
      3003.69
      4002.24
    • Table 4. Parameter space for multiple factor analysis

      View table
      View in Article

      Table 4. Parameter space for multiple factor analysis

      FactorsParameterRange
      PositionalBeam offset(0 μm, 100 μm)
      Piston effect (lateral)(0 mm, 1 mm)
      Piston effect (longitudinal)(0 mm, 1 mm)
      Test mass lateral shift(0 μm, 100 μm)
      Test mass longitudinal shift(0 μm, 100 μm)
      Rotation angle(0 μrad, 100 μrad)
      Beam parameterMeasurement beam waist(0.5mm, 1 mm)
      The distance from the waist of the measurement beam(0 mm, 50 mm)
      Detector parameterQPD slit(0 μm, 100 μm)
    • Table 5. Maximum (absolute value) and minimum (absolute value) of the LPS with both LPF and AP in 10,000 simulations

      View table
      View in Article

      Table 5. Maximum (absolute value) and minimum (absolute value) of the LPS with both LPF and AP in 10,000 simulations

      Signal definitionMaximumMinimum
      LPF9.6939×105 pm6.4400 pm
      AP9.1285×105 pm14.7801 pm
    • Table 6. Main effect index S1 and total effect index ST for different parameters (LPF definition)

      View table
      View in Article

      Table 6. Main effect index S1 and total effect index ST for different parameters (LPF definition)

      FactorsParameterS1ST
      PositionalBeam offset0.000370.00023
      Piston effect (lateral)0.015160.21815
      Piston effect (longitudinal)8.8911×10−75.3478×10−9
      Test mass lateral shift0.000960.00217
      Test mass longitudinal shift1.0968×10−75.9016×10-11
      Rotation angle0.753500.99122
      Beam parameterMeasurement beam waist0.000810.00240
      Distance from the measurement beam’s waist5.8822×10−63.1740×10−7
      Detector parameterQPD slit0.000170.00028
    • Table 7. Main effect index S1 and total effect index ST for different parameters (AP definition)

      View table
      View in Article

      Table 7. Main effect index S1 and total effect index ST for different parameters (AP definition)

      FactorsParameterS1ST
      PositionalBeam offset0.000930.00047
      Piston effect (lateral)0.014090.21586
      Piston effect (longitudinal)1.6607×10−65.29173×10−9
      Test mass lateral shift-0.001170.00214
      Test mass longitudinal shift1.6703×10−77.6198×10-11
      Rotation angle0.759880.99156
      Beam parameterMeasurement beam waist0.000850.00039
      Distance from the measurement beam’s waist2.1826×10−65.2593×10−8
      Detector parameterQPD slit0.000730.00035
    Tools

    Get Citation

    Copy Citation Text

    Meng-yuan ZHAO, Jia SHEN, Xiao-dong PENG, Xiao-shan MA, Zhen YANG, He-shan LIU, Xin MENG, Jia-feng ZHANG. Analysis of multi-factor influences of tilt-to-length coupling noise in a test mass interferometer[J]. Chinese Optics, 2025, 18(3): 704

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Column on Space-based Gravitational Wave Detection

    Received: Sep. 26, 2024

    Accepted: Dec. 10, 2024

    Published Online: Jun. 16, 2025

    The Author Email: Xiao-shan MA (maxiaoshan@iet.cn)

    DOI:10.37188/CO.EN-2024-0031

    Topics