Laser & Optoelectronics Progress, Volume. 56, Issue 15, 151503(2019)

Human Action Recognition Algorithm Based on Bi-LSTM-Attention Model

Mingkang Zhu1 and Xianling Lu2、*
Author Affiliations
  • 1 Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education) Jiangnan University, Wuxi Jiangsu 214122, China
  • 2 School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    Figures & Tables(14)
    Action recognition framework based on Bi-LSTM-Attention model
    Partial structural diagram of Inceptionv3
    LSTM cell structure
    Bi-LSTM network model
    Attention mechanism model
    Comparison of video frames before and after adding noise to pictures. (a) Original video frames; (b) noise video frames with σ=0.2; (c) noise video frames with σ=0.4
    Thermodynamic charts of feature regions
    • Table 1. Experimental parameters

      View table

      Table 1. Experimental parameters

      ParameterValue
      Loss functionCategorical_crossentropy
      OptimizerAdam
      Learning rate0.0001
      Batch_size16
      Epoch100
    • Table 2. Dataset division

      View table

      Table 2. Dataset division

      DatasetTrainingValidationTestCross validation
      Action Youtobe9603203200
      KTH48001205
    • Table 3. Action recognition confusion matrix of Action Youtobe dataset%

      View table

      Table 3. Action recognition confusion matrix of Action Youtobe dataset%

      CategoryBasketballBikingDivingG-swingH-ridingSoccerSwingTennisJumpingVolleyballWalking
      Basketball96.30000000003.70
      Biking10.5289.48000000000
      Diving00100.0000000000
      G-swing00096.67003.330000
      H-riding002.08095.840002.0800
      Soccer00012.12087.8800000
      Swing00000096.55003.450
      Tennis3.7000000096.30000
      Jumping4.35000000095.6500
      Volleyball009.5200000090.480
      Walking0003.8403.840003.8488.48
    • Table 4. Comparison of proposed algorithm and other model algorithms on Action Youtobe dataset%

      View table

      Table 4. Comparison of proposed algorithm and other model algorithms on Action Youtobe dataset%

      AlgorithmAccuracyMemory occupancyAccuracy (0.2)Accuracy (0.4)
      Binary CNN-Flow[18]84.304677.3270.68
      3D spatio-temporal[19]88.00---
      Hierarchical clustering multi-task[7]89.705384.4078.60
      Deep-Temporal LSTM[15]90.274687.5683.28
      Discriminative representation[20]91.60---
      Proposed DB-LSTM[16]92.844289.1582.37
      Fisher vectors[21]93.80---
      Inceptionv3 + LSTM89.533183.5476.54
      Inceptionv3 + Bi-LSTM92.813388.3882.82
      Inceptionv3+ Bi-LSTM-Attention94.383792.5689.24
    • Table 5. Accuracy comparison of cross validation for KTH dataset%

      View table

      Table 5. Accuracy comparison of cross validation for KTH dataset%

      AlgorithmDataset1Dataset2Dataset3Dataset4Dataset5Average
      Inception v3 +LSTM97.5082.5097.5086.6787.5090.33
      Inception v3 +Bi-LSTM99.1787.50100.0093.3393.3394.67
      Inception v3+Bi-LSTM-attention100.0089.17100.0095.0094.1795.67
    • Table 6. Action recognition confusion matrix of KTH dataset

      View table

      Table 6. Action recognition confusion matrix of KTH dataset

      ActionBoxingHandclappingHandwavingJoggingRunningWalking
      Boxing9900001
      Handclapping0973000
      Handwaving0397000
      Jogging0009640
      Running0005932
      Walking0004492
    • Table 7. Comparison of proposed algorithm and other model algorithms on KTH dataset%

      View table

      Table 7. Comparison of proposed algorithm and other model algorithms on KTH dataset%

      AlgorithmAccuracyMemory occupancyAccuracy (0.2)Accuracy (0.4)
      3D CNN[11]90.206287.2081.80
      Spatio-temporal[6]92.10---
      D-M and S-P feauters[22]92.70---
      D-L slow feature[23]93.10580.8085.40
      Deep-Temporal LSTM[15]93.904690.1084.60
      CNN-LSTM[24]94.20---
      Hierarchical clustering multi-task[7]94.305390.6084.30
      Inceptionv3 + Bi-LSTM-Attention95.673793.8090.27
    Tools

    Get Citation

    Copy Citation Text

    Mingkang Zhu, Xianling Lu. Human Action Recognition Algorithm Based on Bi-LSTM-Attention Model[J]. Laser & Optoelectronics Progress, 2019, 56(15): 151503

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 23, 2019

    Accepted: Mar. 11, 2019

    Published Online: Aug. 5, 2019

    The Author Email: Xianling Lu (jnluxl@jiangnan.edu.cn)

    DOI:10.3788/LOP56.151503

    Topics