Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2412004(2024)

Lightweight Traffic Sign Recognition and Detection Algorithm Based on Improved YOLOv5s

Fei Liu1, Yanfen Zhong1,2,3、*, and Jiawei Qiu1
Author Affiliations
  • 1School of Civil Engineering and Transportation, Nanchang Hangkong University, Nanchang 330063, Jiangxi , China
  • 2Jiangxi Intelligent Building Engineering Research Centre, Nanchang 330063, Jiangxi , China
  • 3Nanchang Hangkong University Intelligent Construction Research Centre, Nanchang 330063, Jiangxi , China
  • show less
    Figures & Tables(16)
    Structure of BMGE-YOLOv5s
    Structure of global MHSA
    Structure of GhostNetv2
    Structures of GBneckv2 and DFC attention mechanism
    Structure of ECA module
    Structure of C3GBneckv2
    Partial images of CCTSDB2017 dataset
    Partial images of TSRD dataset
    Detection results of YOLOv5s+BoTNet+MPDIoU model
    Model detection results after lightweight improving
    Detection results of BMGE-YOLOv5s on CCTSDB2017 and TSRD datasets. (a) Low illumination or at night; (b) high illumination; (c) complex background information; (d) signs partially worn or obscured; (e) multi-scale, multi-perspective; (f) normal illumination
    • Table 1. Experimental environment configuration

      View table

      Table 1. Experimental environment configuration

      ParameterConfiguration
      CPUIntel Core i7-13700KF
      GPUNVIDIA RTX A5000 GDDR6
      Video storage24 G
      Memory128 G
      Operating systemUbuntu 20.04
      Graphics card accelerationCUDA 11.8
      Programming languagePython 3.9
    • Table 2. Performance comparison of different algorithms

      View table

      Table 2. Performance comparison of different algorithms

      AlgorithmParameters /106FLOPs /109Weight /MFPS /(frame·s-1mAP@0.5 /%
      YOLOv464.40142.8245.06790.04
      YOLOv5s7.0316.014.218189.80
      YOLOv736.90104.7156.012692.70
      YOLOv811.7228.55.915994.53
      DETR72.3147.6252.09491.67
      BMGE-YOLOv5s5.2014.514.030393.10
    • Table 3. Performance comparison of different loss functions

      View table

      Table 3. Performance comparison of different loss functions

      ModelPRmAP@0.5mAP
      YOLOv5s+IoU84.986.187.884.3
      YOLOv5s+DIoU86.388.388.384.9
      YOLOv5s+CIoU90.588.189.885.1
      YOLOv5s+MPDIoU89.887.090.085.2
    • Table 4. Results of ablation experiments

      View table

      Table 4. Results of ablation experiments

      ModelP /%R /%mAP@0.5 /%FPS /(frame·s-1
      YOLOv5s85.588.189.8181
      YOLOv5s+BoTNet81.895.191.9185
      YOLOv5s+MPDIoU89.887.090.0188
      YOLOv5s+BoTNet+MPDIoU85.789.692.3196
    • Table 5. Results of lightweight ablation study

      View table

      Table 5. Results of lightweight ablation study

      ModelNumber of layersWeight /MParameters /106FLOPs /109FPS /(frame·s-1mAP@0.5 /%
      YOLOv5s27014.27.0316.035993.40
      YOLOv5s+GBneckv227413.67.1616.135793.70
      YOLOv5s+GBneckv2+ECA28412.46.5115.534594.10
    Tools

    Get Citation

    Copy Citation Text

    Fei Liu, Yanfen Zhong, Jiawei Qiu. Lightweight Traffic Sign Recognition and Detection Algorithm Based on Improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2412004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Feb. 5, 2024

    Accepted: Apr. 30, 2024

    Published Online: Dec. 13, 2024

    The Author Email: Yanfen Zhong (70016@nchu.edu.cn)

    DOI:10.3788/LOP240672

    CSTR:32186.14.LOP240672

    Topics