Chinese Journal of Lasers, Volume. 51, Issue 11, 1101011(2024)

Spaceborne Lidar Remote Sensing Progress and Developments (Invited)

Weibiao Chen1,2、*, Jiqiao Liu1,2、**, Xiaopeng Zhu1,2, Decang Bi1,2, and Xia Hou1,2
Author Affiliations
  • 1Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    Figures & Tables(33)
    The Apollo 15 ruby laser altimeter and the elevation measurement[1-2]
    MOLA and measured 3D topographic map of Mars[3]
    LOLA and 3D elevation map of the lunar surface[4-5]
    Lunar laser altimeter. (a) Japanese lunar laser altimeter[6]; (b) Indian lunar laser altimeter[8]
    GLAS spaceborne lidar structure[9]
    GLAS spaceborne lidar measurement. (a) Arctic sea ice cover[19]; (b) global forest cover[20]
    Diagram of the operating mode of the ICEsat-2 satellite laser altimeter and the measured ice surface elevation and thickness changes[24]
    Arctic sea ice height changes measured by the ICEsat-2 satellite laser altimeter[21]
    Measurement of ICEsat-2 satellite laser altimeter. (a) Elevation profile of vegetation cover[22]; (b) optical parameter profiles of the marine subsurface[23]
    LITE[27] and the measured vertical profiles of the atmosphere[26]
    Schematic of the CALIOP system[16]
    Attenuated backscattering signal acquired by the CALIOP[28]. (a) 532 nm total backscattering signal; (b) 532 nm polarization backscattering signal; (c) 1064 nm backscattering signal
    Long-range transport of aerosols from the Sahara Desert monitored by the CALIOP in August 2007[30]
    Diagram of CATS multi-wavelength lidar structure[31]
    Measurement of CATS multi-wavelength lidar[31]. (a) Vertical profile of the 532 nm attenuated total backscattering; (b) vertical profile of the 1064 nm depolarization ratio
    Atmospheric backscattering signals from the 1064 nm and 532 nm channels acquired by the GLAS in October 2003[32]
    532 nm cloud and aerosol profiles acquired by the ICEsat-2 ATLAS on October 17, 2018[33]
    EarthCARE ATLID lidar prototype[34]
    Schematic diagram of ALADIN in orbit[35]
    Global line-of-sight wind speed profile obtained by the ALADIN[17,37]
    Schematic diagram of the ASCENDS lidar measurement concept[39]
    Schematic diagram of lidar. (a) Greenhouse gas detection lidar A-SCOPE[41]; (b) spaceborne lidar satellite MERLIN
    Chang’e-1 laser altimeter and the acquired DEM map of the moon[11]
    ZY3-02 laser altimeter[12]
    GF-7 satellite laser altimeter and land elevation measurement result[13,45]
    Terrestrial ecosystem carboninventory satellite and multi-beam lidar[46,14]
    Atmospheric environment monitoring satellite and atmospheric detection lidar ACDL
    Global CO2 column concentration in July 2022 measured by the ACDL lidar
    Profile of attenuated backscattering coefficient of the typical clouds and aerosols from the ACDL[18]
    Cloud and aerosol optical parameter profiles of the ACDL[51]. (a) Backscattering coefficient; (b) extinction coefficient;
    • Table 1. Main technical parameters of the ACDL[18]

      View table

      Table 1. Main technical parameters of the ACDL[18]

      ParameterValue

      Laser wavelength

      (in vacuum)

      1572.024 nm (On-line),

      1572.085 nm (Off-line)

      1064.490 nm

      532.245 nm

      Laser energy

      150 mJ@532 nm

      110 mJ @1064 nm

      75 mJ @1572 nm

      Frequency stability of

      pulsed laser

      1572 nm: ≤0.6 MHz@10000 s

      532 nm: ≤5 MHz@10000 s

      Laser pulse width≤50 ns
      Laser repetition rate

      20 Hz @1572 nm

      40 Hz @532 nm and 1064 nm

      532 nm laser polarization>400:1
      Divergence angle<0.1 mrad
      Telescope aperture1000 mm
      Field of view<0.2 mrad
      Receiver channel532 nm HSRL channel
      532 nm parallel channel
      532 nm polarization channel
      1064 nm aerosol channel and altimeter channel
      1572 nm CO2 channel
      Data acquisition50×106 s-1
    • Table 2. Typical spaceborne lidar for deep space exploration and earth observation

      View table

      Table 2. Typical spaceborne lidar for deep space exploration and earth observation

      Country /

      Agency

      America

      /NASA

      America

      /NASA

      America

      /NASA

      America

      /NASA

      JapanIndiaChina

      America /

      NASA

      America

      /NASA

      ChinaChinaChina
      Payload

      Apollo

      15 laser

      altimeter

      MOLAMLALOLALALTLLRI

      Chang’e-1

      laser altimeter

      GLASATLASZY3-02 laser altimeterGF-7 laser altimeterCASAL
      Application typeplanets elevationplanets elevationplanets elevationplanets elevationplanets elevationplanets elevationplanets elevationelevation of ice coverice cover, lands, aerosols and cloudsplanets elevationplanets elevation

      elevation of

      vegetation

      OrbitMoonMarsMercuryMoonMoonMoonMoonEarthEarthEarthEarthEarth
      Years in space19711996‒20012004‒20152009‒2018200720082007‒2009

      2003‒2010

      (operation

      intermittently)

      2018

      to now

      2016

      to now

      2019

      to now

      2022

      to now

      Orbit

      altitude /

      km

      95‒119400200‒1500030‒200100100200600500500500506

      Laser

      type

      flash lamp pumped ruby laser

      all-solid

      Nd∶YAG

      laser

      all-solid Nd∶YAG laserall-solid Nd∶YAG laserall-solid Nd∶YAG laserall-solid Nd∶YAG laserall-solid Nd∶YAG laser

      all-solid

      Nd∶YAG

      laser

      all-solid Nd∶YVO4 laserall-solid Nd∶YAG laserall-solid Nd∶YAG laserall-solid Nd∶YAG laser

      Wavelength

      (vacuum)/nm

      694.31064106410641064106410641064 /532532.272106410641064

      Pulse

      repetition

      rate /Hz

      0.0510828111401000023/640

      Pulse

      energy /

      mJ

      20045203.210010150

      75 @1064 nm

      35 @532 nm

      0.12

      (strong)

      /0.045

      (weak)

      20018073

      Pulse

      width /ns

      7.5661725‒751.5<75‒73‒7

      Divergence

      angle /

      mrad

      0.370.080.10.40.320.60.110.0240.10.040.06
      Laser beam111511116125

      Telescope

      aperture/m

      0.10.50.1150.140.10.20.12810.80.220.61

      Telescope

      FOV /

      mrad

      0.850.40.410.871.50.160.0830.5<0.50.3
      Detectoranaloganaloganaloganaloganaloganaloganaloganalog and photon countingphoton countinganaloganaloganalog

      Accuracy /

      m

      20.250.150.155<50.10.23<10.30.3
    • Table 3. Spaceborne lidar for atmosphere detection

      View table

      Table 3. Spaceborne lidar for atmosphere detection

      Country /

      Agency

      America /

      NASA

      America /

      NASA

      America /

      NASA

      ChinaChina

      Europe /

      ESA

      Europe /

      ESA

      Mission

      Space

      aircraft

      CALIPSOISSDQ-1DQ-2ADM-AeolusEarthCARE
      PayloadLITECALIOPCATSACDLACDLALADINATLID

      Application

      type

      clouds and

      aerosols

      clouds and

      aerosols

      clouds and

      aerosols

      CO2, clouds

      and aerosols

      CO2, clouds

      and aerosols

      wind profileclouds and aerosols
      OrbitEarthEarthEarthEarthEarthEarthEarth

      Years in

      space

      1994

      (53 hours)

      2006‒20232015‒20172022 to now

      Planned

      in 2025

      2018‒20232024

      Orbit

      altitude /km

      260705400705705320320
      Laser type

      flashlamp

      pumped

      Nd∶YAG

      laser

      all-solid

      Nd∶YAG

      laser

      all-solid

      Nd∶YVO4

      laser

      all-solid

      Nd∶YAG

      laser (single

      frequency)

      all-solid

      Nd∶YAG

      laser (single

      frequency)

      all-solid

      frequency-tripled

      Nd∶YAG

      laser (single

      frequency)

      all-solid

      frequency-tripled

      Nd∶YAG

      laser (single

      frequency)

      Wavelength

      (vacuum) /

      nm

      1064,

      532,

      355

      1064, 532

      Laser 1: 1064,

      532,355

      Laser 2: 532,355

      532, 1064,

      1572

      532, 1064,

      1572

      355355

      Pulse

      repetition

      rate /Hz

      1020.16

      Laser 1: 5000

      Laser 2: 4000

      20 @1572 nm

      40 @532 nm,

      1064 nm

      20 @1572 nm

      40 @532 nm,

      1064 nm

      5151

      Pulse

      energy /

      mJ

      470,

      530,

      170

      110

      Laser 1: 1

      Laser 2: 2

      150 @532 nm

      110 @1064 nm

      75 @1572 nm

      150 @532 nm

      110 @1064 nm

      75 @1572 nm

      6535

      Pulse

      width /ns

      272010≤50≤502020

      Divergence

      angle /mrad

      1.8 @1064 nm

      1.1 @532 nm

      0.9 @355 nm

      0.10.036≤0.1≤0.10.0130.036
      Laser beam1111111

      Telescope

      aperture /m

      0.94610.6111.50.62

      Telescope

      FOV /mrad

      1.1 /3.50.130.110.20.20.0180.66
      Detectoranaloganaloganaloganaloganalog

      photon

      counting

      photon

      counting

      Accuracy

      vertical

      resolution:

      15 m

      aerosol

      accuracy:

      30%‒50%;

      vertical

      resolution:

      30 m@532 nm

      60 m@1064 nm

      vertical

      resolution:

      60 mhorizontal resolution:

      350 m

      CO2 column

      volume

      fraction:

      1×10-6

      aerosol

      profile:

      20%;

      vertical

      resolution:

      24 m

      CO2 column

      volume

      fraction:

      1×10-6

      aerosol profile:

      20%;vertical resolution:

      24 m

      vertical

      resolution:

      250 m to

      2 km;

      wind speed

      precision:

      3 m/s to

      6 m/s

      vertical

      resolution:

      100 m

      (0‒20 km

      altitude)

      500 m

      (20‒40 km

      altitude);

      aerosol

      accuracy: 30%

    Tools

    Get Citation

    Copy Citation Text

    Weibiao Chen, Jiqiao Liu, Xiaopeng Zhu, Decang Bi, Xia Hou. Spaceborne Lidar Remote Sensing Progress and Developments (Invited)[J]. Chinese Journal of Lasers, 2024, 51(11): 1101011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Mar. 5, 2024

    Accepted: May. 21, 2024

    Published Online: Jun. 20, 2024

    The Author Email: Chen Weibiao (wbchen@siom.ac.cn), Liu Jiqiao (liujiqiao@siom.ac.cn)

    DOI:10.3788/CJL240655

    CSTR:32183.14.CJL240655

    Topics