Infrared and Laser Engineering, Volume. 49, Issue 10, 20200333(2020)
Application of adaptive optics coherence tomography in retinal high resolution imaging
[1] Yang Jiaqiang, Cheng Dewen, Wang Qingfeng, . Design of a novel wide view-field angle and anti-stray-light fundus camera[J]. Acta Optica Sinica, 32, 1122002(2012).
[2] Li Can, Song Shumei, Liu Ying, . Design of optical system for catadioptric fundus camera[J]. Optics and Precision Engineering, 20, 1710-1717(2012).
[3] Liu Lili, Huang Tao, Cai Min, . Retinal imaging system with large field of view based on liquid crystal adaptive optics[J]. Optics & Precision Engineering, 21, 301-307(2013).
[4] Webb R H, Hughes G W. Scanning laser ophthalmoscope[J]. IEEE Transactions on Biomedical Engineering, BME-28, 488-492(1981).
[5] Webb R H, Hughes G W, Delori F C. Confocal scanning laser ophthalmoscope[J]. Applied Optics, 26, 1492-1499(1987).
[6] Swanson E A, Izatt J A, Hee M R, et al. In vivo retinal imaging by optical coherence tomography[J]. Optics Letters, 18, 1864-1866(1993).
[7] Shiroki K. Fluorescein fundus angiography[J]. Ophthalmology, 46, 1355-1364(2004).
[8] Wojtkowski M, Kaluzny B, Zawadzki R J, et al. New directions in ophthalmic optical coherence tomography[J]. Optom Vis Sci, 89, 524-542(2012).
[9] Miller D T, Kurokawa K. Cellular scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography[J]. Annual Review of Vision Science, 6, 19.1-19.34(2020).
[10] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[11] Deng Keran, Wei Kai, Jin Kai, . Research on high-contrast imaging performance of 1.8 m telescope sodium beacon adaptive optical system[J]. Infrared and Laser Engineering, 49, 20200058(2020).
[12] He Jieling, Wei Ling, Yang Jinsheng, . Phase fitting optimization method to laser beam shaping system based on deformable mirror[J]. Laser & Optoelectronics Progress, 53, 020101(2016).
[13] Simmonds R D, Salter P S, Jesacher A, et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system[J]. Optics Express, 19, 24122-24128(2011).
[15] Jin Limin, Luo Hongxin, Wang Jie, . Application of bimorph mirror in the optical system of synchrotron radiation light source[J]. Chinese Optics, 10, 699-707(2017).
[16] Liang J, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A Optics Image Science& Vision, 14, 2884-2892(1997).
[17] Liu Lixin, Zhang Meiling, Wu Zhaoqing, . Application of adaptive optics in fluorescence microscope[J]. Laser & Optoelectronics Progress, 57, 120001(2020).
[18] Chernyshov A, Sterr U, Riehle F, et al. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts[J]. Appl Opt, 44, 6419-6425(2005).
[19] Chamot S R, Dainty C, Esposito Simone. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor[J]. Opt Express, 14, 518-526(2006).
[20] [20] Rueckel M, Denk W. Coherencegated wavefront sensing using a virtual Shack–Hartmann sens[C] SPIE, 2006, 6306: 63060H.
[21] Tuohy S, Podoleanu A Gh. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor[J]. Opt Express, 18, 3458-3476(2010).
[22] Rueckel Markus, Denk Winfried. Properties of coherence-gated wavefront sensing[J]. J Opt Soc Am A Opt Image Vis, 24, 3517-3529(2007).
[23] [23] Wang Jingyu, Podoleanu A Gh. Timedomain coherencegated ShackHartmann wavefront sens[C] SPIE, 2011, 8091: 80911L.
[24] [24] Wang J, Podoleanu A G. Sweptsource coherencegated ShackHartmann wavefront sens[C] SPIE, 2012, 8213: 42.
[25] [25] Wang J, Podoleanu A G. Demonstration of depthresolved wavefront sensing using a sweptsource coherencegated ShackHartmann wavefront sens[C] SPIE Bios International Society f Optics Photonics, 2015.
[26] Hermann B, Fernández EJ, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 29, 2142-2144(2004).
[27] Zhang Y, Rha J, Jonnal R, et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina[J]. Opt Express, 13, 4792-4811(2005).
[28] Zawadzki R J, Jones S M, Olivier S S, et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging[J]. Opt Express, 13, 8532-8546(2005).
[29] Merino D, Dainty C, Bradu A, et al. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy[J]. Opt Express, 14, 3345-3353(2006).
[30] Bigelow C E, Iftimia N V, Ferguson R D, et al. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 24, 1327-1336(2007).
[31] Shi G H, Ding Z H, Dai Y, et al. Adaptive optics optical coherence tomography based on a 61-element deformable mirror[J]. Journal of Physics Conference Series, 48, 506-510(2006).
[32] Fernández E J, Povazay B, Hermann B, et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator[J]. Vision Res, 45, 3432-3444(2005).
[33] Jian Y, Zawadzki R J, Sarunic M V. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging[J]. Biomed Opt, 18, 056007(2013).
[34] Jian Y, Xu J, Gradowski M A, et al. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice[J]. Biomed Opt Express, 5, 547-559(2014).
[35] Zawadzki R J, Choi S S, Jones S M, et al. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 24, 1373(2007).
[36] Hammer D X, Ferguson R D, Mujat M. Multimodal adaptive optics retinal imager: design and performance[J]. J Opt Soc Am, A, 29, 2598-2607(2012).
[37] Jonnal R S, Qu J, Thorn K, et al. En-face coherence gating of the retina with adaptive optics[J]. Investigative Ophthalmology & Visualence, 44, U275-U275(2003).
[38] Pircher M, Zawadzki R J, Evans J W, et al. Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography[J]. Optics Letters, 33, 22-24(2008).
[39] Ginner L, Kumar A, Fechtig D, et al. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo[J]. Optica, 4, 924-31(2017).
[40] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).
[41] Unterhuber A, Povazay B, Hermann B, et al. In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid[J]. Optics Express, 13, 3252-8(2005).
[42] Bourquin S, Aguirre A D, Hartl I, et al. Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: Glass laser and nonlinear fiber[J]. Opt Express, 11, 3290-3297(2003).
[43] Lim H, Jiang Y, Wang Y, et al. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm[J]. Optics Letters, 30, 1171-1180(2005).
[44] Yun S H, Tearney G J, Boer J F de, et al. High-speed optical frequency-domain imaging[J]. Opt Express, 11, 2953-2963(2003).
[45] [45] Yun S H, Tearney G J, Boer J F de, et al. Catheterbased optical frequency domain imaging at 36 frames per second[C] Coherence Domain Optical Methods Optical Coherence Tomography in Biomedicine IX, 2005: 56905916.
[46] Kowalczyk M, Martynkien T, Mergo P, et al. Ultrabroadband wavelength-swept source based on total mode-locking of an Yb: CaF2 laser[J]. Photonics Research, 7, 182-186(2019).
[47] Lee E C, Boer J F D, Mujat M, et al. In vivo optical frequency domain imaging of human retina and choroid[J]. Optics Express, 14, 4403-4411(2006).
[48] Kurokawa K, Sasaki K, Makita S, et al. Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography[J]. Opt Express, 18, 8515-8527(2010).
[49] Mujat M, Ferguson R D, Patel A H, et al. High resolution multimodal clinical ophthalmic imaging system[J]. Opt Express, 18, 11607-11621(2010).
[50] Grulkowski I, Liu J J, Potsaid B, et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with verticalcavity surface emitting lasers[J]. Biomed Opt Express, 3, 2733-2751(2012).
[51] Klein T, Wieser W, Reznicek L, et al. Multi-MHz retinal OCT[J]. Biomed Opt Express, 4, 1890-1908(2013).
[52] Jian Y, Lee S, Ju M J, et al. Lens-based wavefront sensorless adaptive optics swept source OCT[J]. Entific Reports, 6, 27620(2016).
[53] Azimipour M, Migacz J V, Zawadzki R J, et al. Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz[J]. Optica, 6, 300-303(2019).
[54] Azimipour M, Jonnal R S, Werner J S, et al. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging[J]. Opt Lett, 44, 4219-4222(2019).
[56] Qu Junle, Jonnal R S, Thorn K E, . Single cell imaging of the living human retina using adaptive optics and optical coherence tomography[J]. Acta Biophysica Sinica, 20, 104-108(2004).
[57] Zhang Yudong, Jiang Wenhan, Shi Guohua, . Application of adaptive optics in ophthalmology[J]. Science in China, 37, 68-74(2007).
[60] Liu R X, Zheng X L, Li D Y, et al. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera[J]. Chin Phys B, 23, 094211(2014).
[61] Zneng Xianliang, Liu Ruixue, Xia Mingliang, . Retinal correction imaging system based on liquid crystal adaptive optics[J]. Chinese Optics, 7, 98-104(2014).
[63] Fernández E, Unterhuber A, Prieto P, et al. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser[J]. Opt Express, 13, 400-409(2005).
[64] Bedford R E, Wyszecki G. Axial chromatic aberration of the human eye[J]. J Opt Soc Am, 47, 564-565(1957).
[65] Harmening W M, Tiruveedhula P, Roorda A, et al. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye[J]. Biomed Opt Express, 3, 2066-2077(2012).
[66] Fernández E J, Hermann B, Povazay B, et al. Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina[J]. Opt Express, 16, 11083-11094(2008).
[67] Zawadzki R J, Cense B, Zhang Y, et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction[J]. Opt Express, 16, 8126-8143(2008).
[68] Zawadzki R J, Jones S M, Pilli S, et al. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging[J]. Biomed Opt Express, 2, 1674-1686(2011).
[69] Felberer F, Kroisamer J S, Baumann B, et al. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo[J]. Biomed Opt Express, 5, 439-456(2014).
[70] Kocaoglu O P, Lee S, Jonnal R S, et al. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics[J]. Biomed Opt Express, 2, 748-763(2011).
[71] Azimipour M, Zawadzki R J, Gorczynska I, et al. Intraframe motion correction for raster-scanned adaptive optics images using strip-based cross-correlation lag biases[J]. PLOS ONE, 13, e0206052(2018).
[72] Kocaoglu O P, Ferguson R D, Jonnal R S, et al. Adaptive optics optical coherence tomography with dynamic retinal tracking[J]. Biomed Opt Express, 5, 2262-2284(2014).
[73] Bedggood P, Daaboul M, Ashman R, et al. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging[J]. Biomed Opt, 13, 024008(2008).
[74] Thaung J, Knutsso P. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging[J]. Opt Express, 17, 4454-4467(2009).
[75] Klein T, Wieser W, Eigenwillig C M, et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser[J]. Opt Express, 19, 3044-3062(2011).
[76] Bonora S, Zawadzki R J. Wavefront sensorless modal deformable mirror correction in adaptive optics optical coherence tomography[J]. Opt Lett, 38, 4801-4804(2013).
[77] Wong K S, Jian Y, Cua M, et al. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography[J]. Biomed Opt Express, 6, 580-590(2015).
[78] Xiao P, Fink M, Boccara A C. Adaptive optics full-field optical coherence tomography[J]. Biomed Opt, 21, 121505(2016).
[79] Bonora S, Jian Y, Zhang P, et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens[J]. Opt Express, 23, 21931-21941(2015).
[80] Verstraete H R G W, Wahls S, Kalkman J, et al. Model-based sensor-less wavefront aberration correction in optical coherence tomography[J]. Opt Lett, 40, 5722-5725(2015).
[81] Polans J, Keller B, Zevallos O M Carrasco, et al. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions[J]. Biomed Opt Express, 8, 16-37(2017).
[82] Verstraete H R G W, Heisler M, Ju M J, et al. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging[J]. Biomedical Optics Express, 8, 2261(2017).
[83] Kumar A, Kamali T, Platzer R, et al. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT[J]. Biomed Opt Express, 6, 1124-1134(2015).
[84] Pande P, Liu Y Z, South F A, et al. Automated computational aberration correction method for broadband interferometric imaging techniques[J]. Opt Lett, 41, 3324-3327(2016).
[85] Xu Y, Liu Y Z, Boppart S A, et al. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography[J]. Appl Opt, 55, 2034-2041(2016).
[86] Hillmann D, Spahr H, Hain C, et al. Aberration free volumetric high-speed imaging of in vivo retina[J]. Sci Rep, 6, 35209(2016).
[87] Xiao P, Fink M, Boccara A C. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations[J]. Opt Lett, 41, 3920-3923(2016).
[88] Ginner Laurin, Schmoll Tilman, Kumar Abhishek, et al. Holographic line field En-face OCT with digital adaptive optics in the retina in vivo[J]. Biomedical Optics Express, 9, 472-485(2018).
[89] South F A, Kurokawa K, Liu Z, et al. Combined hardware and computational optical wavefront correction[J]. Biomed Opt Express, 9, 2562-2574(2018).
[90] Graciano P D Y, Angulo A, Lopez-Mago D, et al. Spectrally-resolved Hong-Ou-Mandel interferometry for quantum-optical coherence tomography[J]. Photonics Research, 8, 1023-1034(2020).
Get Citation
Copy Citation Text
Wenqiang Fan, Zhichen Wang, Baogang Chen, Tao Chen, Qichang An. Application of adaptive optics coherence tomography in retinal high resolution imaging[J]. Infrared and Laser Engineering, 2020, 49(10): 20200333
Category: Adaptive optics
Received: Sep. 6, 2020
Accepted: --
Published Online: Jul. 6, 2021
The Author Email: Qichang An (anjj@mail.ustc.edu.cn)