Journal of Synthetic Crystals, Volume. 51, Issue 12, 2153(2022)
Research Progress of FullColor MicroDisplay Device Manufacturing Technology Based on MicroLED
[1] [1] HSIANG E L, YANG Z, YANG Q, et al. Prospects and challenges of miniLED, OLED, and microLED displays[J]. Journal of the Society for Information Display, 2021, 29(4/6): 446465.
[2] [2] HUANG Y G, TAN G J, GOU F W, et al. Prospects and challenges of miniLED and microLED displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387401.
[3] [3] LEE S L, CHENG C C, LIU C J, et al. 9.4inch 228ppi flexible microLED display[J]. Journal of the Society for Information Display, 2021, 52(2): 10401043.
[4] [4] LU B, WANG Y, HYUN B R, et al. Color difference and thermal stability of flexible transparent InGaN/GaN multiple quantum wells miniLED arrays[J]. IEEE Electron Device Letters, 2020, 41(7): 10401043.
[5] [5] ZHAO C, LI W, YAN G W, et al. Application of microLED in visible light communication[C]. Wuhan: International Conference on Display Technology, 2020.
[7] [7] JIN S X, LI J, LI J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631633.
[8] [8] DAY J, LI J, LIE D Y C, et al. ⅢNitride fullscale highresolution microdisplays[J]. Applied Physics Letters, 2011, 99(3): 031116.
[9] [9] TEMPLIER F. GaNbased emissive microdisplays: a very promising technology for compact, ultrahigh brightness display systems[J]. Journal of the Society for Information Display, 2016, 24(11): 669675.
[10] [10] OLIVIER F, DAAMI A, L DUPR, et al. Investigation and improvement of 10 μm pixelpitch GaNbased microLED arrays with very high brightness[J]. SID Symposium Digest of Technical Papers, 2017, 48(1):353356.
[11] [11] ZHANG X, QI L, CHONG W C, et al. Latenews paper: highresolution monolithic microLED fullcolor microdisplay[C]//SID Symposium Digest of Technical Papers, John Wiley & Sons Ltd, 2020.
[12] [12] BAE J, SHIN Y, YOO H, et al. Quantum dotintegrated GaN lightemitting diodes with resolution beyond the retinal limit[J]. Nature Communications, 2022, 13: 1862.
[13] [13] JIANG H X, JIN S X, LI J, et al. Ⅲnitride blue microdisplays[J]. Applied Physics Letters, 2001, 78(9): 13031305.
[14] [14] JEON C W, CHOI H W, DAWSON M D. A novel fabrication method for a 64 × 64 matrixaddressable GaNbased microLED array[J]. Physica Status Solidi (A) Applied Research, 2003, 200(1): 7982.
[15] [15] CHOI H W, JEON C W, DAWSON M D. Fabrication of matrixaddressable microLED arrays based on a novel etch technique[J]. Journal of Crystal Growth, 2004, 268(3/4): 527530.
[17] [17] JEON C W, KIM K S, DAWSON M D. Fabrication of twodimensional InGaNbased microLED arrays[J]. Physica Status Solidi, 2015, 192(2): 325328.
[19] [19] CHEN C J, CHEN H C, LIAO J H, et al. Fabrication and characterization of activematrix 960×540 blue GaNbased microLED display[J]. IEEE Journal of Quantum Electronics, 2019, 55(2): 16.
[20] [20] HUANG H H, HUANG S K, TSAI Y L, et al. Investigation on reliability of red microlight emitting diodes with atomic layer deposition passivation layers[J]. Optics Express, 2020, 28(25): 3818438195.
[21] [21] AMELIE D, PATRICK L M, HELGE H, et al. Full InGaN red (625 nm) microLED (10 m) demonstration on a relaxed pseudosubstrate[J]. Applied Physics Express, 2021, 14(9): 092011.
[22] [22] OH J T, LEE S Y, MOON Y T, et al. Light output performance of red AlGaInPbased light emitting diodes with different chip geometries and structures[J]. Optics Express, 2018, 26(9): 1119411200.
[23] [23] KAWAGUCHI Y, HUANG C Y, WU Y R, et al. Semipolar (2021-) singlequantumwell red lightemitting diodes with a low forward voltage[J]. Japanese Journal of Applied Physics, 2013, 52(8S): 08 JC08.
[24] [24] PIENIAK K, CHLIPALA M, TURSKI H, et al. Quantumconfined Stark effect and mechanisms of its screening in InGaN/GaN lightemitting diodes with a tunnel junction[J]. Optics Express, 2021, 29(2): 18241837.
[25] [25] WONG M S, KEARNS J A, LEE C M, et al. Improved performance of AlGaInP red microlightemitting diodes with sidewall treatments[J]. Optics Express, 2020, 28(4): 57875793.
[26] [26] ZHAO Y Z, LIANG J Q, ZENG Q H, et al. 2000 PPI siliconbased AlGaInP red microLED arrays fabricated via wafer bonding and epilayer liftoff[J]. Optics Express, 2021, 29(13): 2021720228.
[27] [27] HSIANG E L, LI Y, HE Z Q, et al. Enhancing the efficiency of color conversion microLED display with a patterned cholesteric liquid crystal polymer film[J]. Nanomaterials, 2020, 10(12): 2430.
[28] [28] HORNG R H, CHIEN H Y, TARNTAIR F G, et al. Fabrication and study on red light microLED displays[J]. IEEE Journal of the Electron Devices Society, 6: 10641069.
[30] [30] MENG W Q, XU F F, YU Z H, et al. Threedimensional monolithic microLED display driven by atomically thin transistor matrix[J]. Nature Nanotechnology, 2021, 16(11): 12311236.
[31] [31] HWANGBO S, HU L, HOANG A T, et al. Waferscale monolithic integration of fullcolour microLED display using MoS2 transistor[J]. Nature Nanotechnology, 2022, 17(5): 500506.
[34] [34] CHENG Y J, LO J C C, QIU X, et al. Quantum dot film patterning on a trenched glass substrate for defining pixel arrays of a fullcolor mini/microLED display[C]//2020 21 st International Conference on Electronic Packaging Technology (ICEPT). Guangzhou, China. IEEE: 13.
[35] [35] LIN H Y, SHER C W, HSIEH D H, et al. Optical crosstalk reduction in a quantumdotbased fullcolor microlightemittingdiode display by a lithographicfabricated photoresist mold[J]. Photonics Research, 2017, 5(5): 411416.
[36] [36] LI X H, KUNDALIYA D, TAN Z J, et al. Projection lithography patterned highresolution quantum dots/thiolene photopolymer pixels for color down conversion[J]. Optics Express, 2019, 27(21): 3086430874.
[37] [37] ZI Y L, WING C C, XU Z, et al. Synthesis and conversion efficiency optimization of quantum dots layer for fullcolor microLED display[J]. Chinese Journal of Luminescence, 2022, 43(3): 421429.
[38] [38] LEE C T, CHENG C J, LEE H Y, et al. Color conversion of GaNbased micro lightemitting diodes using quantum dots[J]. IEEE Photonics Technology Letters, 2015, 27(21): 22962299.
[39] [39] HAN H V, LIN H Y, LIN C C, et al. Resonantenhanced fullcolor emission of quantumdotbased micro LED display technology[J]. Optics Express, 2015, 23(25): 3250432515.
[40] [40] LI P A, ZHANG X, LI Y F, et al. Monolithic fullcolor microdisplay using patterned quantum dot photoresist on dualwavelength LED epilayers[J]. Journal of the Society for Information Display, 2020, 29: 157165.
[41] [41] SUN W C, LI F, TAO J, et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm[J]. Nanoscale, 2022, 14(16): 59945998.
[42] [42] WANG L, ZHU Y Y, LIU H, et al. Giant stability enhancement of CsPbX3 nanocrystal films by plasmainduced ligand polymerization[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 3527035276.
[43] [43] LIU D, WENG K K, LU S Y, et al. Direct optical patterning of perovskite nanocrystals with ligand crosslinkers[J]. Science Advances, 2022, 8(11): eabm8433.
[44] [44] WANG W, GUO R, XIONG X, et al. Improved stability and efficiency of perovskite via a simple solid diffusion method[J]. Materials Today Physics, 2021, 18: 100374.
[45] [45] GONG C K, WANG X F, XIA X F, et al. Insitu guanidinium bromide passivation treatment of CsPbBr3 perovskite quantum dots exhibiting high photoluminescence and environmental stability[J]. Applied Surface Science, 2021, 559: 149986.
[46] [46] PENG D, ZHANG K, CHAO V S D, et al. Fullcolor pixelatedaddressable light emitting diode on transparent substrate (LEDoTS) microdisplays by CoB[J]. Journal of Display Technology, 2016, 12(7): 742746.
[47] [47] MEITL M A, RADAUSCHER E, ROTZOLL R, et al. Emissive displays with transferprinted microscale inorganic LEDs[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 257263.
[48] [48] CHANG M K, JUN Y L, DUK J K, et al. Hybrid fullcolor inorganic lightemitting diodes integrated on a single wafer using selective area growth and adhesive bonding[J].ACS Photonics 2018, 5 (11): 44134422.
[49] [49] ROBIN Y, BAE S Y, SHUBINA T V, et al. Insight into the performance of multicolor InGaN/GaN nanorod light emitting diodes[J]. Scientific Reports, 2018, 8: 7311.
[50] [50] ELGHOROURY H S, YEH M, CHEN J C, et al. Growth of monolithic fullcolor GaNbased LED with intermediate carrier blocking layers[J]. AIP Advances, 2016, 6(7): 075316.
[51] [51] LEE M L, YEH Y H, TU S J, et al. White emission from nonplanar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal Pyramids[J]. Optics Express, 2015, 23(7): A401A412.
[52] [52] FUNATO M, HAYASHI K, UEDA M, et al. Emission color tunable lightemitting diodes composed of InGaN multifacet quantum wells[J]. Applied Physics Letters, 2008, 93(2): 021126.
[53] [53] YAMANO K, KISHINO K. Selective area growth of InGaNbased nanocolumn LED crystals on AlN/Si substrates useful for integrated μLED fabrication[J]. Applied Physics Letters, 2018, 112(9): 091105.
[54] [54] ICHIKAWA S, SHIOHMI K, MORIKAWA T, et al. Eudoped GaN and InGaN monolithically stacked fullcolor LEDs with a wide color gamut[J]. Appl Phys Express, 2021,14(3): 31008.
[55] [55] LIU Z J, CHONG W C, WONG K M, et al. A novel BLUfree fullcolor LED projector using LED on silicon microdisplays[J]. IEEE Photonics Technology Letters, 2013, 25(23): 22672270.
[56] [56] CHONG W C, WONG K M, LIU Z J, et al. A novel fullcolor 3LED projection system using RGB light emitting diodes on silicon (LEDoS) microdisplays[J]. SID Symposium Digest of Technical Papers, 2013, 44(1): 838841.
Get Citation
Copy Citation Text
WAN Yanli, TIAN Tingfang, ZHANG Zhenwei. Research Progress of FullColor MicroDisplay Device Manufacturing Technology Based on MicroLED[J]. Journal of Synthetic Crystals, 2022, 51(12): 2153
Category:
Received: Jun. 15, 2022
Accepted: --
Published Online: Feb. 18, 2023
The Author Email: WAN Yanli (1812790247@qq.com)
CSTR:32186.14.