Acta Optica Sinica, Volume. 43, Issue 1, 0106004(2023)
High-Peak-Power Pulsed Single-Frequency Fiber MOPA Based on Yb3+-Doped Silica Fiber
[1] Carlson C G, Dragic P D, Price R K et al. A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 451-461(2009).
[2] Xuan H W, Zhao Z G, Igarashi H et al. Development of narrow-linewidth Yb- and Er- fiber lasers and frequency mixing for ArF excimer laser seeding[J]. Proceedings of SPIE, 8961, 89612M(2014).
[3] Petersen E B, Shi W, Nguyen D T et al. Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers[J]. Optics Letters, 35, 2170-2172(2010).
[4] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).
[5] Palese S, Cheung E, Goodno G et al. Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control[J]. Optics Express, 20, 7422-7435(2012).
[6] Zhang C X, Liu J, Gao Y et al. Porous nickel oxide micron polyhedral particles for high-performance ultrafast photonics[J]. Optics & Laser Technology, 146, 107546(2022).
[7] Li X H, An M Q, Li G et al. MOF-derived porous dodecahedron rGO-Co3O4 for robust pulse generation[J]. Advanced Materials Interfaces, 9, 2101933(2022).
[8] Li X H, Guo Y X, Ren Y J et al. Narrow-bandgap materials for optoelectronics applications[J]. Frontiers of Physics, 17, 13304(2022).
[9] Guo Y X, Li X H, Guo P L et al. Supercontinuum generation in an Er-doped figure-eight passively mode-locked fiber laser[J]. Optics Express, 26, 9893-9900(2018).
[10] Hu X H, Zhang W, Yang Z et al. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Optics Letters, 36, 2659-2661(2011).
[11] Chang L P, Guo S Q, Fan W et al. Experimental study of stimulated Brillouin scattering in single-frequency pulsed fiber amplifiers[J]. Acta Optica Sinica, 30, 1112-1116(2010).
[12] Fu S J, Shi W, Feng Y et al. Review of recent progress on single-frequency fiber lasers[J]. Journal of the Optical Society of America B, 34, A49-A62(2017).
[13] Su R T, Zhou P, Lü H B et al. Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber[J]. Optics Communications, 316, 86-90(2014).
[14] Yang C S, Cen X, Xu S H et al. Research progress of single-frequency fiber laser[J]. Acta Optica Sinica, 41, 0114002(2021).
[15] Su R T, Zhou P, Wang X L et al. Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber[J]. Optics & Laser Technology, 57, 1-4(2014).
[16] Petersen E, Shi W, Chavez-Pirson A et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses[J]. Applied Optics, 51, 531-534(2012).
[17] Leigh M, Shi W, Zong J et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Applied Physics Letters, 92, 181108(2008).
[18] Fang Q, Shi W, Kieu K et al. High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling[J]. Optics Express, 20, 16410-16420(2012).
[19] Tian H, Shi C D, Fu S J et al. 0.59-mJ single-frequency Yb3+-doped hundred-nanosecond pulsed all-fiber laser[J]. Chinese Journal of Lasers, 49, 1301005(2022).
[20] Ran Y, Su R T, Ma P F et al. High power narrow-linewidth linearly polarized nanosecond all-fiber amplifier with near-diffraction-limited beam quality[J]. Journal of Optics, 18, 015506(2016).
[21] Shiraki K, Ohashi M, Tateda M. Suppression of stimulated Brillouin scattering in a fibre by changing the core radius[J]. Electronics Letters, 31, 668-669(1995).
[22] Huang L, Ma P F, Su R T et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser[J]. Optics Express, 29, 761-782(2021).
[23] Patokoski K, Rissanen J, Noronen T et al. Single-frequency 100 ns/0.5 mJ laser pulses from all-fiber double clad ytterbium doped tapered fiber amplifier[J]. Optics Express, 27, 31532-31541(2019).
[24] Shi C D, Tian H, Sheng Q et al. High-power single-frequency pulsed fiber MOPA via SPM suppression based on a triangular pulse[J]. Results in Physics, 28, 104594(2021).
[25] Zhang L, Cui S Z, Liu C et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 21, 5456-5462(2013).
[26] Zhang X, Diao W F, Liu Y et al. Single-frequency polarized eye-safe all-fiber laser with peak power over kilowatt[J]. Applied Physics B, 115, 123-127(2014).
[27] Li M J, Chen X, Wang J et al. Al/Ge co-doped large mode area fiber with high SBS threshold[J]. Optics Express, 15, 8290-8299(2007).
[28] Munroe M J, Hamamoto M Y, Dutton D A. Reduction of SPM induced spectral broadening in a high peak power narrow linewidth IR fiber laser using phase modulation[J]. Proceedings of SPIE, 7195, 71952N(2009).
Get Citation
Copy Citation Text
Zheng Shi, Quan Sheng, Chaodu Shi, Shijie Fu, Xun Deng, Hao Tian, Wei Shi, Jianquan Yao. High-Peak-Power Pulsed Single-Frequency Fiber MOPA Based on Yb3+-Doped Silica Fiber[J]. Acta Optica Sinica, 2023, 43(1): 0106004
Category: Fiber Optics and Optical Communications
Received: May. 20, 2022
Accepted: Jul. 11, 2022
Published Online: Jan. 6, 2023
The Author Email: Fu Shijie (shijie_fu@tju.edu.cn), Shi Wei (shiwei@tju.edu.cn)