Infrared Technology, Volume. 44, Issue 6, 571(2022)
Multi-Feature Adaptive Fusion Method for Infrared and Visible Images
[1] [1] Paramanandham N, Rajendiran K. Multi sensor image fusion for surveillance applications using hybrid image fusion algorithm[J]. Multimedia Tools and Applications, 2018, 77(10): 12405-12436.
[2] [2] ZHANG Xingchen, YE Ping, QIAO Dan, et al. Object fusion tracking based on visible and infrared images: a comprehensive review[J]. Information Fusion, 2020, 63: 166-187.
[3] [3] TU Zhengzheng, LI Zhun, LI Chenglong, et al. Multi-interactive dualdecoder for RGB-thermal salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 5678-5691.
[4] [4] FENG Zhanxiang, LAI Jianhuang, XIE Xiaohua. Learning modalityspecific representations for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 579-590.
[5] [5] MO Yang, KANG Xudong, DUAN Puhong, et al. Attribute filter based infrared and visible image fusion[J]. Informantion Fusion, 2021, 75: 41-54.
[6] [6] LI Hui, WU Xiaojun, Kittle J. MDLatLRR: a novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4733-4746.
[9] [9] LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Informantion Fusion, 2017, 36: 191-207 .
[10] [10] WANG Zhishe; WU Yuanyuan; WANG Junyao, et al. Res2Fusion: infrared and visible image fusion based on dense Res2net and double non-local attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
[11] [11] MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178.
[12] [12] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[13] [13] Toet A. Computational versus psychophysical bottom-up image saliency: a comparative evaluation study[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(11): 2131-2146.
[14] [14] LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623.
[15] [15] ZHANG Yu , LIU Yu , SUN Peng , et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118.
[16] [16] WANG Zhishe, WANG Junyao, WU Yuanyuan, et al. UNFusion: a unified multi-scale densely connected network for infrared and visible image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3360-3374.
[17] [17] MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.
[18] [18] MA Jiayi, ZHANG Hao, SHAO Zhenfeng, et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14.
[19] [19] LI Hui, WU Xiaojun, Josef Kittler. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73:72-86.
[20] [20] TOET A. TNO Image Fusion Datase[DB/OL]. [2014-04-26]. https:// figshare.com/articles/TN Image Fusion Dataset/1008029.
[21] [21] XU Han. Roadscene Database[DB/OL]. [2020-08-07]. https:// github.com/hanna-xu/RoadScene.
[22] [22] Ariffin S. OTCBVS Database[DB/OL]. [2007-06]. http://vcipl-okstate. org/pbvs/bench/.
[23] [23] XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518.
[24] [24] Aslantas V, Bendes E. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2008(2): 1-28.
[25] [25] LIU Zheng, Blasch E, XUE Zhiyun, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34: 94-109.
[26] [26] RAO Yunjiang. In-fibre bragg grating sensors[J]. Measurement Science and Technology, 1997(8): 355-375.
[27] [27] Aslantas V, Bendes E. A new image quality metric for image fusion:
[28] [28] HAN Yu, CAI Yunze, CAO Yin, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013(14): 127-135.
[29] [29] MA Kede, ZENG Kai, WANG Zhou. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Trans. Image Process, 2015, 24: 3345-3356.
Get Citation
Copy Citation Text
WANG Junyao, WANG Zhishe, WU Yuanyuan, CHEN Yanlin, SHAO Wenyu. Multi-Feature Adaptive Fusion Method for Infrared and Visible Images[J]. Infrared Technology, 2022, 44(6): 571