Acta Optica Sinica, Volume. 41, Issue 20, 2030001(2021)

All-Solid-State Mid-Infrared Fiber-Coupled QEPAS Photoacoustic Detection Module

Yihua Liu1, Huadan Zheng1,2、*, Zhuangzhi Xie1, Haoyang Lin1, Zhifei Yang1, Qian Wu1, Wenguo Zhu1,2, Yongchun Zhong1,2, Jianhui Yu1,2, and Zhe Chen1,2
Author Affiliations
  • 1Department of Optoelectronic Engineering, College of Science & Engineering, Jinan University, Guangzhou, Guangdong 510632, China;
  • 2Key Laboratory of Optical Fiber Sensing and Communication Technology of Guangdong Province, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    References(37)

    [1] Dong L, Tittel F K, Li C G et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 24, A528-A535(2016).

    [2] Borri S, Patimisco P, Galli I et al. Intracavity quartz-enhanced photoacoustic sensor[J]. Applied Physics Letters, 104, 091114(2014).

    [3] Chen H, Winderlich J, Gerbig C et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique[J]. Atmospheric Measurement Techniques, 3, 375-386(2010).

    [4] West G A, Barrett J J, Siebert D R et al. Photoacoustic spectroscopy[J]. Review of Scientific Instruments, 54, 797-817(1983).

    [5] Kosterev A A, Bakhirkin Y A, Curl R F et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 27, 1902-1904(2002).

    [6] Sigrist M W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary)[J]. Review of Scientific Instruments, 74, 486-490(2003).

    [7] Patimisco P, Sampaolo A, Dong L et al. Recent advances in quartz enhanced photoacoustic sensing[J]. Applied Physics Reviews, 5, 011106(2018).

    [8] Li S Z, Dong L, Wu H P et al. Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork[J]. Analytical Chemistry, 91, 5834-5840(2019).

    [9] Cao Y, Liu K, Wang R F et al. Three-wavelength measurement of aerosol absorption using a multi-resonator coupled photoacoustic spectrometer[J]. Optics Express, 29, 2258-2269(2021).

    [10] Cao Y, Liu Q, Wang R F et al. Development of a 443 nm diode laser-based differential photoacoustic spectrometer for simultaneous measurements of aerosol absorption and NO2[J]. Photoacoustics, 21, 100229(2021).

    [11] Liu X, Zhang T, Zhang G et al. Carbon monoxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 47, 0111002(2020).

    [12] Dong L, Kosterev A A, Thomazy D et al. QEPAS spectrophones: design, optimization, and performance[J]. Applied Physics B, 100, 627-635(2010).

    [13] Liu K, Zhao W X, Wang L et al. Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm -1[J]. Optics Communications, 340, 126-130(2015).

    [14] Zheng C T, Ye W L, Sanchez N P et al. Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy[J]. Sensors and Actuators B, 244, 365-372(2017).

    [15] Dong L, Spagnolo V, Lewicki R et al. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor[J]. Optics Express, 19, 24037-24045(2011).

    [16] Kosterev A A, Tittel F K, Serebryakov D V et al. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Review of Scientific Instruments, 76, 043105(2005).

    [17] Liu K, Li J, Wang L et al. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J]. Applied Physics B, 94, 527-533(2009).

    [18] Wysocki G, Kosterev A A, Tittel F K. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm[J]. Applied Physics B, 85, 301-306(2006).

    [19] Wang Z, Wang Q. Ching J Y L, et al. A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser[J]. Sensors and Actuators B, 246, 710-715(2017).

    [20] Zhang L L, Liu J X, Zhu Z Z et al. Detection of trace sulfur dioxide gas using quartz-enhanced photoacoustic spectroscopy[J]. Laser & Optoelectronics Progress, 56, 213001(2019).

    [21] Zheng H D, Dong L, Sampaolo A et al. Single-tube on-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 41, 978-981(2016).

    [22] Liu K, Guo X Y, Yi H M et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 34, 1594-1596(2009).

    [23] Hu L, Zheng C T, Zheng J et al. Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 44, 2562-2565(2019).

    [24] Wang Z L, Zhang Q D, Chang J et al. Quartz-enhanced photoacoustic spectroscopy based on the four-off-beam acoustic micro-resonator[J]. Journal of Lightwave Technology, 38, 5212-5218(2020).

    [25] Li Z L, Wang Z, Qi Y et al. Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper[J]. Sensors and Actuators B, 248, 1023-1028(2017).

    [26] Kosterev A A, Dong L, Thomazy D et al. QEPAS for chemical analysis of multi-component gas mixtures[J]. Applied Physics B, 101, 649-659(2010).

    [27] Wang X, Jing C R, Hou K X et al. Online detection of human-exhaled end-tidal carbon dioxide using tunable semiconductor absorption spectroscopy[J]. Chinese Journal of Lasers, 47, 0311002(2020).

    [28] Ma Y F, He Y, Zhang L G et al. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork[J]. Applied Physics Letters, 110, 031107(2017).

    [29] Wu H P, Sampaolo A, Dong L et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing[J]. Applied Physics Letters, 107, 111104(2015).

    [30] Yin X K, Dong L, Wu H P et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser[J]. Sensors and Actuators B, 247, 329-335(2017).

    [31] Lewicki R, Kosterev A A, Thomazy D M et al. Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor[J]. Proceedings of SPIE, 7945, 79450K(2011).

    [32] Xie Y C, Wang R F, Cao Y et al. Research on detecting CO2 with off-beam quartz-enhanced photoacoustic spectroscopy at 2.004 μm[J]. Spectroscopy and Spectral Analysis, 40, 2664-2669(2020).

    [33] Liu X L, Wu H P, Shao J et al. High-sensitive carbon dioxide detection using quartz-enhanced photoacoustic spectroscopy with a 2.0 μm distributed feedback laser[J]. Spectroscopy and Spectral Analysis, 35, 2078-2082(2015).

    [35] Wang Q Y, Yin X Y, Yang L et al. Geometrical optimization of resonant ellipsoidal photoacoustic cell in photoacoustic spectroscopy system[J]. Spectroscopy and Spectral Analysis, 40, 1351-1355(2020).

    [36] Zheng H D, Lin H Y, Dong L et al. Quartz-enhanced photothermal-acoustic spectroscopy for trace gas analysis[J]. Applied Sciences, 9, 4021(2019).

    [37] Lin H Y, Huang Z, Liu Y H et al. Ultra-compact QEPAS acoustic detection module with acoustic wave confinement[J]. Infrared Physics & Technology, 106, 103278(2020).

    [38] Lv H H, Zheng H D, Liu Y H et al. Radial-cavity quartz-enhanced photoacoustic spectroccopy[J]. Optics Letters, 46, 3917(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yihua Liu, Huadan Zheng, Zhuangzhi Xie, Haoyang Lin, Zhifei Yang, Qian Wu, Wenguo Zhu, Yongchun Zhong, Jianhui Yu, Zhe Chen. All-Solid-State Mid-Infrared Fiber-Coupled QEPAS Photoacoustic Detection Module[J]. Acta Optica Sinica, 2021, 41(20): 2030001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Mar. 17, 2021

    Accepted: May. 6, 2021

    Published Online: Sep. 30, 2021

    The Author Email: Huadan Zheng (zhenghuadan@jnu.edu.cn)

    DOI:10.3788/AOS202141.2030001

    Topics