Laser & Infrared, Volume. 54, Issue 9, 1462(2024)

Rotating object detection of remote sensing image based on YOLOv8L

HAN Hui-yan1,2,3, ZHANG Xiu-quan1,2,3, KUANG Li-qun1,2,3, HAN Xie1,2,3, and YANG Xiao-wen1,2,3
Author Affiliations
  • 1School of Computer Science and Technology, North University of China, Taiyuan 030051, China
  • 2Shanxi Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, China
  • 3Shanxi Province's Vision Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051, China
  • show less
    References(15)

    [3] [3] Yang X, Yang J, Yan J, et al. Scrdet: towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8232-8241.

    [4] [4] Qian W, Yang X, Peng S, et al. Learning modulated loss for rotated object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2458-2466.

    [5] [5] Yang X, Yan J. Arbitrary-oriented object detection with circular smooth label[C]//Computer Vision-ECCV 2020, 2020: 677-694.

    [6] [6] Yang X, Zhou Y, Zhang G, et al. The KFIoU loss for rotated object detection[J]. arXiv, 2022: 2201, 12558.

    [7] [7] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.

    [8] [8] Liu S, Huang D, Wang Y. Learning spatial fusion for single-shot object detection[J]. arXiv, 2019: 1911, 09516.

    [9] [9] Xia G S, Bai X, Ding J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.

    [10] [10] Chen Z, Chen K, Lin W, et al. Piou loss: towards accurate oriented object detection in complex environments[C]//Computer Vision-ECCV 2020, 2020: 195-211.

    [11] [11] Yang X, Yan J. On the arbitrary-oriented object detection: Classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130(5): 1340-1365.

    [12] [12] Zhang G, Lu S, Zhang W. CAD-Net: a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10015-10024.

    [13] [13] Hou L, Lu K, Yang X, et al. G-rep: Gaussian representation for arbitrary-oriented object detection[J]. Remote Sensing, 2023, 15(3): 757.

    [14] [14] Pan X, Ren Y, Sheng K, et al. Dynamic refinement network for oriented and densely packed object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11207-11216.

    [15] [15] Lang S, Ventola F, Kersting K. Dafne: a one-stage anchor-free deep model for oriented object detection[J]. arXiv, 2021: 2109.06148.

    [16] [16] Yang X, Yan J, Feng Z, et al. R3det: Refined single-stage detector with feature refinement for rotating object[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171.

    [17] [17] Wang J, Yang W, Li H C, et al. Learning center probability map for detecting objects in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5): 4307-4323.

    Tools

    Get Citation

    Copy Citation Text

    HAN Hui-yan, ZHANG Xiu-quan, KUANG Li-qun, HAN Xie, YANG Xiao-wen. Rotating object detection of remote sensing image based on YOLOv8L[J]. Laser & Infrared, 2024, 54(9): 1462

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 1, 2023

    Accepted: Apr. 30, 2025

    Published Online: Apr. 30, 2025

    The Author Email:

    DOI:10.3969/j.issn.1001-5078.2024.09.018

    Topics