Opto-Electronic Engineering, Volume. 46, Issue 6, 180437(2019)
Performance analysis of a sum-table-based method for computing cross-correlation in GPU-accelerated ultrasound strain elastography
[1] [1] Jiang J, Hall T J. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging[J]. Physics in Medicine & Biology, 2007, 52(13): 3773–3790.
[2] [2] Chen L J, Treece G M, Lindop J E, et al. A quality-guided dis-placement tracking algorithm for ultrasonic elasticity imaging[J]. Medical Image Analysis, 2009, 13(2): 286–296.
[3] [3] Peng B, Wang Y Q, Hall T J, et al. A GPU-accelerated 3-D coupled subsample estimation algorithm for volumetric breast strain elastography[J]. IEEE Transactions on Ultrasonics, Fer-roelectrics, and Frequency Control, 2017, 64(4): 694–705.
[4] [4] Zhou Y J, Zheng Y P. A motion estimation refinement frame-work for real-time tissue axial strain estimation with freehand ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(9): 1943–1951.
[5] [5] Luo J W, Konofagou E E. A fast normalized cross-correlation calculation method for motion estimation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(6): 1347–1357.
[6] [6] Zhu Y N, Hall T J. A modified block matching method for real-time freehand strain imaging[J]. Ultrasonic Imaging, 2002, 24(3): 161–176.
[7] [7] D'Hooge J, Bijnens B, Thoen J, et al. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function[J]. IEEE Transactions on Medical Imaging, 2002, 21(9): 1022–1030.
[8] [8] Konofagou E E, D'Hooge J, Ophir J. Myocardial elastogra-phy--a feasibility study in vivo[J]. Ultrasound in Medicine & Bi-ology, 2002, 28(4): 475–482.
[9] [9] Lewis J P. Fast template matching[J]. Proceeding of Vision Interface, 1995, 32(4): 351–361.
[10] [10] Yang X, Deka S, Righetti R. A hybrid CPU-GPGPU approach for real-time elastography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(12): 2631–2645.
[13] [13] Rosenzweig S, Palmeri M, Nightingale K. GPU-based real-time small displacement estimation with ultrasound[J]. IEEE Trans-actions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(2): 399–405.
[14] [14] Chang L W, Hsu K H, Li P C. GPU-based color Doppler ultra-sound processing[C]//2009 IEEE International Ultrasonics Symposium. Rome, Italy, 2009.
[15] [15] Sun X, Wang S S, Song J J, et al. Toward parallel optimal computation of ultrasound computed tomography using GPU[J]. Proceedings of SPIE, 2018, 10580: 105800R.
[16] [16] Sengupta S, Harris M, Garland M, et al. Efficient parallel scan algorithms for GPUs[M]//Kurzak J, Bader D A, Dongarra J. Scientific Computing with Multicore and Accelerators. Boca Raton: Taylor & Francis, 2008.
[17] [17] Blelloch G E. Scans as primitive parallel operations[J]. IEEE Transactions on Computers, 2002, 38(11): 1526–1538.
[18] [18] Jensen J A. Field: A program for simulating ultrasound sys-tems[J]. Medical & Biological Engineering & Computing, 1996, 34(1): 351–352.
[19] [19] Luo JW, Bai J,He P, et al. Axial strain calculation using a low-pass digital differentiator in ultrasound elastography[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-quency Control, 2004, 51(9): 1119–1127.
[20] [20] Du H N, Liu J, Pellot-Barakat C, et al. Optimizing multicompression approaches to elasticity imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(1): 90–99.
Get Citation
Copy Citation Text
Peng Bo, Luo Shasha, Yang Feng, Jiang Jinfeng. Performance analysis of a sum-table-based method for computing cross-correlation in GPU-accelerated ultrasound strain elastography[J]. Opto-Electronic Engineering, 2019, 46(6): 180437
Received: May. 17, 2018
Accepted: --
Published Online: Jul. 10, 2019
The Author Email: Bo Peng (bopeng@swpu.edu.cn)