Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1617001(2022)

Video Nystagmus Classification Algorithm Based on Attention Mechanism

Haojun Zhou, Xiaoli Zhao*, Yongbin Gao, Haibo Li, and Ruoran Cheng
Author Affiliations
  • School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
  • show less
    Figures & Tables(13)
    Convolution process of Mobilenet V2 under different strides
    Non-local Block[24]
    SE Block[25]
    3D Inverted Residual Block
    3D SE Inverted Residual Block
    Proposed BPPV nystagmus video classification algorithm
    Schematic diagram of video cropping
    Relationship between loss value and accuracy of different loss functions and number of iterations. (a) Loss value; (b) accuracy
    • Table 1. Proposed BPPV nystagmus video classification algorithm framework

      View table

      Table 1. Proposed BPPV nystagmus video classification algorithm framework

      Layer/StrideRepeatOutput size
      Input3×16×224×224
      Conv(3×3×3)/2132×16×112×112
      Inverted Residual Block/2116×16×56×56
      NL Block/1216×16×56×56
      Inverted Residual Block/2224×8×28×28
      Inverted Residual Block/2332×8×14×14
      Inverted Residual Block/2464×2×7×7
      Inverted Residual Block/1396×2×7×7
      Inverted Residual Block/22160×1×4×4
      SE Inverted Residual Block/12160×1×4×4
      Inverted Residual Block/21320×1×4×4
      Conv(3×3×3)/111280×1×4×4
      AvgPool/111280×1×1×1
      Linear1N Classes
    • Table 2. Label description of data set

      View table

      Table 2. Label description of data set

      Mode012
      HorizontalLeftRightNone
      VerticalUpDownNone
      AxialClockwiseCounterclockwiseNone
      IntensityFrom weak to strongFrom strong to weakNone
    • Table 3. Performance of mainstream 3D convolutional neural networks on nystagmus video classification dataset

      View table

      Table 3. Performance of mainstream 3D convolutional neural networks on nystagmus video classification dataset

      AlgorithmNumber of parameters /MBAccuracy
      C3D3134.800.8443
      3D ResNet183233.240.8518
      3D ResNet343263.550.8717
      3D SqueezeNet331.870.8625
      3D ShuffleNetV2341.370.8502
      3D MobileNetV22.440.8791
      Proposed algorithm2.650.9085
    • Table 4. Influence of different modules on the model

      View table

      Table 4. Influence of different modules on the model

      ConditionAccuracy
      3D MobileNet V20.8791
      3D MobileNet V2 +NL Block0.8922
      3D MobileNet V2 +3D SE Inverted Residual Block0.8853
      3D MobileNet V2 +NL Block +3D SE Inverted Residual Block0.9085
    • Table 5. The performance of the proposed algorithm in each category

      View table

      Table 5. The performance of the proposed algorithm in each category

      LabelPrecisionRecallF1-scoreNLabelPrecisionRecallF1-scoreN
      00000.5001.0000.6672711111.0000.9330.96671
      00010.8100.7080.75612311121.0001.0001.000251
      00020.8540.8750.86415011200.8641.0000.92774
      00101.0001.0001.0005011211.0000.9270.962190
      00110.9530.9680.96137111220.9720.9770.975782
      00120.9550.9550.95535012000.7001.0000.82445
      00200.8330.8330.8333012010.8670.9290.897128
      00211.0001.0001.00010012020.9840.9180.950673
      00220.9760.9530.96522612100.5000.4000.44413
      0101212120.8570.7500.80021
      01100.9091.0000.9528412200.8000.8210.8101280
      01110.9680.9890.97842612210.8300.8550.8431742
      01120.9470.9570.95245512220.9070.8740.8902387
      01201.0000.9330.9666020001.0000.6670.8006
      01210.9521.0000.97614520011.0001.0001.00029
      01220.9810.9630.97287720021.0001.0001.0007
      02100.8570.8570.8575120100.2501.0000.40010
      02111.0000.9330.96623720111.0000.8180.90032
      02120.9550.9800.96776720120.5000.6670.57121
      02200.8530.8710.862124020211.0001.0001.00029
      02210.9010.8560.878174620220.9771.0000.988169
      02220.8780.9040.891243421011.0001.0001.00011
      10011.0000.9790.98924921023
      10020.9530.9430.94839821101.0001.0001.00012
      10101.0000.6360.7785121111.0001.0001.00045
      10110.9210.9460.93311421121.0001.0001.000190
      10120.8890.9300.90925921201.0001.0001.0006
      10201.0001.0001.0001321221.0001.0001.000276
      10211.0000.8620.92613622015
      10220.9860.9860.98639522021.0000.8570.92332
      11000.8810.9520.91526322111.0001.0001.0008
      11010.9040.8810.89354022120.5001.0000.6675
      11020.9210.9250.923107122220.9761.0000.988200
    Tools

    Get Citation

    Copy Citation Text

    Haojun Zhou, Xiaoli Zhao, Yongbin Gao, Haibo Li, Ruoran Cheng. Video Nystagmus Classification Algorithm Based on Attention Mechanism[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1617001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: May. 7, 2021

    Accepted: Jul. 13, 2021

    Published Online: Jul. 22, 2022

    The Author Email: Xiaoli Zhao (evawhy@163.com)

    DOI:10.3788/LOP202259.1617001

    Topics