Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450005(2024)

Automatic detection method of bladder tumor cells based on color and shape features

Zitong Zhao1,2, Yanbo Wang3、*, Jiaqi Chen1,2, Mingjia Wang1, Shulong Feng1, Jin Yang1, Nan Song1, Jinyu Wang1,2, and Ci Sun1、**
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, P. R. China
  • 2University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • 3Bethune First Hospital of Jilin University: The First Hospital of Jilin University, Changchun, Jilin 130061, P. R. China
  • show less
    References(26)

    [1] Y. Lotan, C. G. Roehrborn. Cost-effectiveness of a modified care protocol substituting bladder tumor markers for cystoscopy for the followup of patients with transitional cell carcinoma of the bladder: A decision analytical approach. J. Urol., 167, 75-79(2002).

    [2] A. Rodríguez-Alonso et al. Multivariate analysis of survival, recurrence, progression and development of mestastasis in T1 and T2a transitional cell bladder carcinoma. Cancer, 94, 1677-1684(2002).

    [3] M. J. Dibb et al. Ultrasonographic analysis of bladder tumors. Clin. Imaging, 25, 416-420(2001).

    [4] J. Chin et al. Magnetic resonance imaging for detecting and treatment monitoring of orthotopic murine bladder tumor implants. J. Urol., 145, 1297-1301(1991).

    [5] S. Jaume et al. Tumor detection in the bladder wall with a measurement of abnormal thickness in CT scans. IEEE Trans. Biomed. Eng., 50, 383-390(2003).

    [6] A. Collado et al. Early complications of endoscopic treatment for superficial bladder tumors. J. Urol., 164, 1529-1532(2000).

    [7] M. Sun, T. Quoc-Dien. Diagnosis and staging of bladder cancer. Hematol./Oncol. Clin., 29, 205-218(2015).

    [8] Wason S. E. et al. Ureteroscopy, StatPearls [Internet], StatPearls Publishing(2023).

    [9] W. Krajewski et al. Patient comfort during flexible and rigid cystourethroscopy. Videosurgery Other Miniinvasive Tech., 11, 94-97(2016).

    [10] Z. Zhang et al. Application of electrochemical biosensors in tumor cell detection. Thorac. Cancer, 11, 840-850(2020).

    [11] N. M. Anderson, M. Celeste Simon. The tumor microenvironment. Curr. Biol., 30, R921-R925(2020).

    [12] M. A. Stricker, M. Orengo. Similarity of color images. Storage and Retrieval for Image and Video Databases III, 2420(1995).

    [13] A. Ghosh et al. Grid color moment features in glaucoma classification. Int. J. Adv. Comput. Sci. Appl., 6, 99-107(2015).

    [15] Ullah Z.. Features reductions using color moments and classification of brain MRI using K-NN(2019).

    [16] G. Lu, F. Baowei. Medical hyperspectral imaging: A review. J. Biomed. Opt., 19, 010901(2014).

    [17] J. Wang, Q. Li. Quantitative analysis of liver tumors at different stages using microscopic hyperspectral imaging technology. J. Biomed. Opt., 23, 106002(2018).

    [18] L. Sun et al. Diagnosis of cholangiocarcinoma from microscopic hyperspectral pathological dataset by deep convolution neural networks. Methods, 202, 22-30(2022).

    [19] S. Ortega et al. Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networks. Sensors, 20, 1911(2020).

    [20] M. Kujdowicz et al. In vitro spectroscopy-based profiling of urothelial carcinoma: A Fourier transform infrared and Raman imaging study. Cancers, 13, 123(2021).

    [21] C. Angeletti et al. Detection of malignancy in cytology specimens using spectral–spatial analysis. Lab. Invest., 85, 1555-1564(2005).

    [22] Y. Duan et al. Leukocyte classification based on spatial and spectral features of microscopic hyperspectral images. Opt. Laser Technol., 112, 530-538(2019).

    [23] Q. Ran et al. Spatial-spectral blood cell classification with microscopic hyperspectral imagery. AOPC 2017: Optical Spectroscopy and Imaging, 10461(2017).

    [24] X. Hu et al. Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology. J. Innov. Opt. Health Sci., 13, 2050005(2020).

    [25] I. Guyon, J. Weston, S. Barnhill, V. Vapnik. Gene selection for cancer classification using support vector machines. Mac. Learn., 46, 389-422(2002).

    [26] M. A. Hearst et al. Support vector machines. IEEE Intell. Syst. Appl., 13, 18-28(1998).

    Tools

    Get Citation

    Copy Citation Text

    Zitong Zhao, Yanbo Wang, Jiaqi Chen, Mingjia Wang, Shulong Feng, Jin Yang, Nan Song, Jinyu Wang, Ci Sun. Automatic detection method of bladder tumor cells based on color and shape features[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 6, 2023

    Accepted: Feb. 27, 2024

    Published Online: Nov. 13, 2024

    The Author Email: Yanbo Wang (doctorwyb@126.com), Ci Sun (840714201@qq.com)

    DOI:10.1142/S1793545824500056

    Topics