Computer Engineering, Volume. 51, Issue 8, 281(2025)

Two-Stage Adaptive Block Transmission Line Bolt Defect Detection Method

NI Yuansong1, HAN Jun1、*, ZOU Xiaoyan2, HU Guangyi1, and WANG Wenshuai1
Author Affiliations
  • 1School of Communication and Information Engineering, Shanghai University, Shanghai 201900, China
  • 2Zhejiang Huayun Information Technology Co., Ltd., Hangzhou 310051, Zhejiang, China
  • show less
    References(19)

    [13] [13] LIAO J, PIAO Y, SU J, et al. Unsupervised cluster guided object detection in aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11204-11216.

    [14] [14] YANG F, FAN H, CHU P, et al. Clustered object detection in aerial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 8311-8320.

    [15] [15] LI C, YANG T, ZHU S, et al. Density map guided object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2020: 737-746.

    [16] [16] DUAN C, WEI Z, ZHANG C, et al. Coarse-grained density map guided object detection in aerial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 2789-2798.

    [17] [17] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 13733-13742.

    [18] [18] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[EB/OL]. (2022-09-16) [2023-12-08]. https://arxiv.org/abs/2209.07947.

    [19] [19] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2023-12-08]. https://arxiv.org/abs/2107.08430.

    [20] [20] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[EB/OL]. (2021-08-17) [2023-12-08]. https://arxiv.org/pdf/2103.14030.

    [21] [21] LI Y C, ZHANG X F, CHEN D, et al. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 1091-1100.

    [22] [22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-12-08]. https://dblp.org/rec/journals/corr/SimonyanZ14a.html.

    [23] [23] ZHOU D, FANG J, SONG X, et al. IoU loss for 2D/3D object detection[EB/OL]. (2019-08-11) [2023-12-08]. https://arxiv.org/abs/1908.03851.

    [24] [24] LOHALA S, ALSADOON A, PRASAD P W C, et al. A novel deep learning neural network for fast-food image classification and prediction using modified loss function[J]. Multimedia Tools and Applications, 2021, 80(17): 25453-25476.

    [25] [25] JOCHER G, CHAURASIA A, STOKEN A, et al. ultralytics/yolov5: v7.0-yolov5 sota realtime instance segmentation[EB/OL]. [2023-12-08]. https://doi.org/10.5281/zenodo.4154370.

    [26] [26] REIS D, HONG J, KUPEC J, et al. Real-time flying object detection with YOLOv8[EB/OL]. [2023-12-05]. https://arxiv.org/html/2305.09972v2.

    [27] [27] TAN M, PANG R, Le Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 10781-10790.

    [28] [28] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 7464-7475.

    [29] [29] L C, ZHANG W, HUANG H, et al. RTMDet: an empirical study of designing real-time object detectors[EB/OL]. (2022-12-16) [2023-12-05]. https://arxiv.org/abs/2212.07784?context=cs.

    [30] [30] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 2778-2788.

    [31] [31] TANG S, ZHANG S, FANG Y. HIC-YOLOv5: improved YOLOv5 for small object detection[C]//Proceedings of 2024 IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2018: 1091-1100.

    Tools

    Get Citation

    Copy Citation Text

    NI Yuansong, HAN Jun, ZOU Xiaoyan, HU Guangyi, WANG Wenshuai. Two-Stage Adaptive Block Transmission Line Bolt Defect Detection Method[J]. Computer Engineering, 2025, 51(8): 281

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 8, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: HAN Jun (hanjun@shu.edu.cn)

    DOI:10.19678/j.issn.1000-3428.0069193

    Topics