Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 5, 733(2021)

Remote sensing image feature segmentation method based on deep learning

SHEN Yan-shan and WANG A-chuan*
Author Affiliations
  • [in Chinese]
  • show less
    References(8)

    [5] [5] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.

    [6] [6] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015.

    [7] [7] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.

    [13] [13] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.

    [14] [14] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by Exponential Linear Units (ELUs)[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico: IEEE, 2016.

    [15] [15] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille: ACM, 2015.

    Tools

    Get Citation

    Copy Citation Text

    SHEN Yan-shan, WANG A-chuan. Remote sensing image feature segmentation method based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 733

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 3, 2020

    Accepted: --

    Published Online: Aug. 26, 2021

    The Author Email: WANG A-chuan (wangcal1964@126.com)

    DOI:10.37188/cjlcd.2020-0294

    Topics