Infrared and Laser Engineering, Volume. 51, Issue 4, 20210378(2022)
Preparation and extinction properties of carbon/zinc doped ferromagnetic composites
[1] Wang X Y. Development of anti-infrared smoke material and its extinction performance (Invited)[J]. Infrared and Laser Engineering, 49, 20201019(2020).
[2] Ba S H, Chen Y J, Sha Y L, et al. Research progress of solid extinction materials in anti-infrared smokescreen[J]. Chinese Journal of Energetic Materials, 26, 364-372(2018).
[3] Li W C, Zhou X, Ying Y, et al. Progress and prospect in radar absorbing stealth materials[J]. Material Guide, 2, 353-357(2015).
[4] Miu Y K, Liu H F, Liu Q H, et al. Numerical calculation of infrared extinction performances of graphite flakes[J]. Infrared Technology, 37, 190-193(2015).
[5] Wang H X, Zhu Y Z, Ma J, et al. Study on the infrared extinction properties of nano- graphite aggregates[J]. Journal of Functional Material, 42, 616-619(2011).
[6] Bao S, Zhou Y, Zhang Z H. Research on infrared smoke obscuring performance of burnable carbon black[J]. Electrooptic Technology Application, 28, 85-88(2013).
[7] Li S F, Zha W K, Fang J J, et al. Extinction characteristic of graphene smoke to infrared and laser wave[J]. Infrared Technology, 32, 366-370(2010).
[8] Wu H, Ma Y J, Zhu D S, et al. Research on preparation and extinction characteristic of graphene- based[J]. Infrared Technology, 35, 242-246(2013).
[9] [9] Wang H X, Liu D Z, Song Z B. Study on the acters of infrared extinction f carbon nanomaterials[C]Proceedings of 2011 China Functional Materials Technology Industry Fum, 2011:716719. (in Chinese)
[10] Peng W L, Zhang X G, Liu G R, et al. Research on shadowing and interference characteristics of nano-graphite based smoke screen material[J]. Electro-optic Technology Application, 34, 17-20(2019).
[11] Liu Q H, Liu H F, Dai X D, et al. Infrared interfering performance of graphene smoke screen[J]. Infrared Technology, 41, 1071-1076(2019).
[12] Chen X G, Ye Y, Cheng J P. Recent progress in electromagnetic wave absorbers[J]. Journal of Inorganic Materials, 26, 449-457(2011).
[13] Li J S, Xie Y Z, Lu W B, et al. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J]. Carbon, 129, 76-84(2018).
[14] Li J S, Huang H, Zhou Y J, et al. Research progress of graphene-based microwave absorbing materials in the last decade[J]. Journal of Materials Research, 32, 1213-1230(2017).
[15] Ye W, Sun Q L, Zhang G Y. Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites[J]. Ceramics International, 45, 5093-5099(2019).
[16] Rusman L O, Puspitasari A T, Suharyadi E, et al. Crystal structures and magnetic properties of Silica-encapsulated CoZnFe2O4 magnetic nanoparticles[J]. Journal of Magnetics, 24, 149(2019).
[17] Deepty M, Srinivas C, Kumar E R, et al. XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles[J]. Ceramics International, 45, 8037-8044(2019).
[18] Thakur P, Taneja S, Chahar D, et al. Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 167925(2021).
[19] Julien C, Massot M, Pérez-Vicente C. Structural and vibrational studies of LiNi1−yCoyVO4 (0≤y≤1) cathodes materials for Li-ion batteries[J]. Materials Science & Engineering B, 75, 6-12(2000).
[20] Waldron R D. Infrared spectra of ferrites[J]. Physical Review, 99, 1727-1735(1955).
Get Citation
Copy Citation Text
Lixia Bao, Jiangcun Li, Qicai Jia. Preparation and extinction properties of carbon/zinc doped ferromagnetic composites[J]. Infrared and Laser Engineering, 2022, 51(4): 20210378
Category: Materials & Thin films
Received: Dec. 25, 2021
Accepted: --
Published Online: May. 18, 2022
The Author Email: