Acta Optica Sinica, Volume. 41, Issue 24, 2406001(2021)

Neural-Network-Based Estimation Method for Ultraviolet Scattering Channel Under Turbulence

Taifei Zhao1,2、*, Xinzhe Lü1, Yuxin Sun1, and Shuang Zhang1
Author Affiliations
  • 1Faculty of Automation and Information Engineering, Xian University of Technology, Xi′an, Shaanxi 710048, China
  • 2Shaanxi Civil-Military Integration Key Laboratory of Intelligence Collaborative Networks, Xi′an, Shaanxi 710000, China
  • show less
    Figures & Tables(14)
    Wireless ultraviolet NLOS single scattering channel model
    Wireless ultraviolet channel estimation scheme based on deep neural network
    Basic structure of a single neuron
    Training phase flow chart of DE-DNN
    PDF curves of received optical signal intensity under different parameters. (a) Communication distance; (b) elevation angle of transceiver; (c) turbulence intensity
    Influence of elevation angle on transmission attenuation
    Variation curves of transmission attenuation with communication distance under different turbulence intensities
    MSE curves under different DNN model structures. (a) Number of hidden layers; (b) Number of neurons per hidden layer
    Comparison of the convergence speed of two optimization algorithms
    Channel response coefficient estimation results of different algorithms
    Comparison curves of channel estimation performance of different algorithms. (a) MSE; (b) BER
    Influence of turbulence intensity on the estimation performance of DE-DNN
    • Table 1. Parameters of wireless NLOS UV communication system

      View table

      Table 1. Parameters of wireless NLOS UV communication system

      ParameterValue
      Wavelength λ /nm254
      Scattering coefficient ks /km-10.74
      Extinction coefficient ke /km-10.49
      Area of receiving aperture Ar /cm21.77
      Pulse power emitted Pt /mW50
      Communication rate /(Mbit·s-1)1
      Beam divergence angle θT /(°)15
      Receiving field of view θR /(°)30
    • Table 2. Hyperparameter preset values in DNN training phase

      View table

      Table 2. Hyperparameter preset values in DNN training phase

      ParameterValue
      Learning-rate0.001
      Dropout0.6
      Maximum number of epochs60
      Data size3000
      Dataset split (train∶test)7∶3
      Number of hidden layers3
      Number of neurons per hidden layer5
    Tools

    Get Citation

    Copy Citation Text

    Taifei Zhao, Xinzhe Lü, Yuxin Sun, Shuang Zhang. Neural-Network-Based Estimation Method for Ultraviolet Scattering Channel Under Turbulence[J]. Acta Optica Sinica, 2021, 41(24): 2406001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: May. 28, 2021

    Accepted: Jun. 28, 2021

    Published Online: Nov. 30, 2021

    The Author Email: Zhao Taifei (zhaotaifei@163.com)

    DOI:10.3788/AOS202141.2406001

    Topics