Chinese Journal of Lasers, Volume. 38, Issue s1, 114007(2011)
Simulation of the Space-Borne Laser Altimeter Based on Pseudorandom Code Phase Modulation and Heterodyne Detection
[4] [4] J. B. Abshire, X. Sun, H. Riris et al.. Geoscience laser altimeter system (GLAS) on the ICESat mission: pre-launch and on-orbit performance[C]. IEEE, 2003, 3: 1534~1536
[5] [5] S. Nozette, P. Rustan, L. P. Pleasance et al.. The clementine mission to the moon: scientific overview[J]. Science, 1994, 266 (5192): 1835~1839
[6] [6] W. Chen, X. Hou, J. Bi et al.. Solid-state laser for laser altimeter in Chang′E lunar explorer[C]. Seoul: Conference on Lasers and Electro-Optics/Pacific Rim 2007. ThG1
[7] [7] R. S. Afzal. Mars observer laser altimeter: laser transmitter[J]. Appl. Opt., 1994, 33(15): 3184~3188
[8] [8] J. J. Degnan. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements[J]. J. Geodynamics, 2002, 34(3-4): 503~549
[11] [11] J. F. Holmes, B. J. Rask. Coherent, CW, pseudo random code modulated lidar for path resolved optical remote sensing[C]. SPIE, 1994, 2222: 20~28
[12] [12] C. T. Allen, S. K. Chong, Y. Cobanoglu et al.. Development of a 1319-nm laser radar using fiber optics and RF pulse compression[R]. University of Kansas
Get Citation
Copy Citation Text
Yang Fu, Zhan Yage, Yang Qinyu, Xue Shaolin, He Yan. Simulation of the Space-Borne Laser Altimeter Based on Pseudorandom Code Phase Modulation and Heterodyne Detection[J]. Chinese Journal of Lasers, 2011, 38(s1): 114007
Category: remote sensing and sensor
Received: Jul. 5, 2011
Accepted: --
Published Online: Jan. 6, 2012
The Author Email: Fu Yang (fuyang@dhu.edu.cn)