Laser & Optoelectronics Progress, Volume. 58, Issue 20, 2001002(2021)
High-Resolution Remote Sensing Scene Classification Based on Salient Features and DCNN
Fig. 3. Extraction result of saliency map. (a) Original image; (b) K-means clustering; (c) superpixel segmentation; (d) fusion result
Fig. 4. Extraction result of the ROI. (a) Saliency map;(b) gray enhancement map; (c) binarization map; (d) ROI
Fig. 6. Expanded results of the data. (a) Original image; (b) horizontal flip; (c) vertical flip; (d) brightness adjustment
Fig. 7. Loss function and classification accuracy of different models. (a) UC-Merced data set; (b) WHU-RS data set
Fig. 8. Images in different data sets. (a) UC-Merced data set; (b) WHU-RS data set
Fig. 9. Experimental results of the UC-Merced data set. (a) Original image; (b) saliency map; (c) gray enhancement map; (d) binarization map; (e) ROI
Fig. 11. Experimental results in the WHU-RS data set. (a) Original image; (b) saliency map; (c) gray enhancement map; (d) binarization map; (e) ROI
|
|
|
|
Get Citation
Copy Citation Text
Huanhuan Lü, Tao Liu, Hui Zhang, Guofeng Peng, Juntong Zhang. High-Resolution Remote Sensing Scene Classification Based on Salient Features and DCNN[J]. Laser & Optoelectronics Progress, 2021, 58(20): 2001002
Category: Atmospheric Optics and Oceanic Optics
Received: Nov. 25, 2020
Accepted: Jan. 11, 2021
Published Online: Oct. 12, 2021
The Author Email: Huanhuan Lü (lvhh2010@126.com), Tao Liu (85578981@qq.com)