Journal of the Chinese Ceramic Society, Volume. 50, Issue 9, 2493(2022)
Temperature and Pressure Dependences of Luminescence from Nd-Doped M′-Type Gadolinium Tantalate Microcrystals
[1] [1] BENAYAS A, ROSAL B D, PREZ-DELGADO A, et al. Nd:YAG near-infrared luminescent nanothermometers[J]. Adv Opt Mater, 2015, 3(5): 687-694.
[2] [2] ROCHA U, JACINTO C, KUMAR K U, et al. Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles[J]. J Lumin, 2016, 175: 149-157.
[3] [3] KOLESNIKOV I E, KALINICHEV A A, KUROCHKIN M A, et al. New strategy for thermal sensitivity enhancement of Nd3+-based ratiometric luminescence thermometers[J]. J Lumin, 2017, 192: 40-46.
[4] [4] KOLESNIKOV I E, KALINICHEV A A, KUROCHKIN M A, et al. Y2O3:Nd3+ nanocrystals as ratiometric luminescence thermal sensors operating in the optical windows of biological tissues[J]. J Lumin, 2018, 204: 506-512.
[5] [5] SKRIPKA A, KARABANOVAS V, JAROCKYTE G, et al. Decoupling theranostics with rare earth doped nanoparticles[J]. Adv Funct Mater, 2019, 29(12): 1807105.
[6] [6] DANTELLE G, MATULIONYTE M, TESTEMALE D, et al. Nd3+ doped Gd3Sc2Al3O12 nanoparticles: towards efficient nanoprobes for temperature sensing[J]. Phys Chem Chem Phys, 2019, 21(21): 11132-11141.
[7] [7] SKRIPKA A, MORINVIL A, MATULIONYTE M, et al. Advancing neodymium single-band nanothermometry[J]. Nanoscale, 2019, 11(23): 11322-11330.
[8] [8] LAIA A S, HORA D A, REZENDE M V D S, et al. Comparing the performance of Nd3+-doped LiBaPO4 phosphors as optical temperature sensors within the first biological window exploiting luminescence intensity ratio and bandwidth methods[J]. J Lumin, 2020, 227: 117524.
[9] [9] CHEN D X, LIANG Y J, MIAO S H, et al. Nd3+-doped Bi2SiO5 nanospheres for stable ratiometric optical thermometry in the first biological window[J]. J Lumin, 2021, 234: 117967.
[10] [10] HERNNDEZ-RODRGUEZ M A, MUOZ-SANTIUSTE J E, LAVN V, et al. High pressure luminescence of Nd3+ in YAlO3 perovskite nanocrystals: A crystal-field analysis[J]. J Chem Phys, 2018, 148(4): 044201.
[11] [11] RODRGUEZ-MENDOZA U R, LEN-LUIS S F, MUOZ- SANTIUSTE J E, et al. Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor[J]. J Appl Phys, 2013, 113(21): 213517.
[13] [13] LEN-LUIS S F, MUOZ-SANTIUSTE J E, LAVN V, et al. Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal[J]. Opt Express, 2012, 20(9): 10393-10398.
[14] [14] ZHOU P Y, ZHANG Q L, DOU X M, et al. Optical pressure and temperature sensing properties of Nd3+:YTaO4[J]. Phys Chem Chem Phys, 2021, 23(40): 23380-23388.
[15] [15] PENG F, YANG H J, ZHANG Q L, et al. Spectroscopic properties and laser performance at 1,066 nm of a new laser crystal Nd:GdTaO4[J]. Appl Phys B, 2015, 118(4): 549-554.
[16] [16] ZHOU P Y, ZHANG Q L, PENG F, et al. Optical properties of Nd3+ ions doped in GdTaO4 for pressure and temperature sensing[J]. J Rare Earths, 2021, DOI: 10.1016/j.jre.2021.04.003.
[17] [17] ZHANG H J, WANG Y H, XIE L C. Luminescent properties of Tb3+ activated GdTaO4 with M and M′ type structure under UV-VUV excitation[J]. J Lumin, 2010, 130(11): 2089-2092.
[18] [18] MURAKAMI R, KAMADA K, HATAKEYAMA S, et al. Single crystal growth and luminescent properties of Tb doped GdTaO4 by the μ-pulling down method[J]. Opt Mater, 2019, 87: 94-97.
[19] [19] BRUNCKOVA H, KOLEV H, ROCHA L A, et al. XPS characterization and luminescent properties of GdNbO4 and GdTaO4 thin films[J]. Appl Surf Sci, 2020, 504: 144358.
[20] [20] HU C, KONG H L, FENG Y Q, et al. Investigation of structure and luminescence properties of Tb3+ activated Gd(Ta1-xPx)O4 phosphors[J]. J Lumin, 2021, 230: 117722.
[21] [21] DING S J, KINROSS A, WANG X F, et al. Experiment and density functional theory analyses of GdTaO4 single crystal[J]. Solid State Commun, 2018, 273: 5-10.
[22] [22] ZHANG Y H, CAO Y Z, ZHAO Y, et al. Optical temperature sensor based on upconversion luminescence of Er3+ doped GdTaO4 phosphors[J]. J Am Ceram Soc, 2021, 104(1): 361-368.
[23] [23] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi hydrostatic conditions[J]. J Geophys Res, 1986, 91(B5): 4673-4676.
[24] [24] HARTENBACH I, LISSNER F, NIKELSKI T, et al. eber oxotantalate der Lanthanide des formeltyps MTaO4 (M = La-Nd, Sm-Lu)[J]. Z Anorg Allg Chem, 2005, 631(12): 2377-2382.
[25] [25] MAKHOV V N, KHAIDUKOV N M, KIRM M, et al. High-temperature VUV spectroscopy of KYF4 crystals doped with Nd3+, Er3+ and Tm3+ ions[J]. Radiat Meas, 2016, 90: 298-302.
[26] [26] SARDAR D K, YOW R M. Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12[J]. Opt Mater, 1998, 10(3): 191-199.
[27] [27] CHEN X, COLLINS J, BARTO1O B D. Thermal red and blue shifts of Nd ion spectral lines in laser garnet crystals[J]. J Lumin, 1994, 60-61: 230-232.
[28] [28] KLICK C C, SCHULMAN J H. Luminescence in Solids[J]. Solid State Phys, 1957, 5: 97-172.
[29] [29] MIYAKAWA T, DEXTER D L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys Rev B, 1970, 1(7): 2961-2969.
[30] [30] ZHANG W W, COLLINS S F, BAXTER G W, et al. Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio[J]. Sensor Actuat A-Phys, 2015, 232: 8-12.
[31] [31] BARNETT J D, BLOCK S, PIENNARINI G J. An optical Fluorescence system for quantitative pressure measurement in the diamond-anvil cell[J]. Rev Sci Instrum, 1973, 44: 1-9.
[32] [32] MUNZ-SANTIUSTE J E, LAVN V, RODRGUEZ-MENDOZA U R, et al. Experimental and theoretical study on the optical properties of LaVO4 crystals under pressure[J]. Phys Chem Chem Phys, 2018, 20(43): 27314-27328.
[33] [33] RUNOWSKI M, SHYICHUK A, TYMINSKI A, et al. Multifunctional optical sensors for nanomanometry and nanothermometry: high-pressure and high-temperature upconversion luminescence of lanthanide-doped phosphates-LaPO4/YPO4:Yb3+-Tm3+[J]. ACS Appl Mater Interfaces, 2018, 10(20): 17269-17279.
[34] [34] MANJN F J, JANDL S, RIOU G, et al. Effect of pressure on crystal-field transitions of Nd-doped YVO4[J]. Phys Rev B, 2004, 69(16): 165121.
[35] [35] ANTONIAK M A, ZELEWSKI S J, OLIVA R, et al. Combined temperature and pressure sensing using luminescent NaBiF4:Yb,Er nanoparticles[J]. ACS Appl Nano Mater, 2020, 3(5): 4209-4217.
[36] [36] WISSER M D, CHEA M, LIN Y, et al. Strain-induced modification of optical selection rules in lanthanide based upconverting nanoparticles[J]. Nano Lett, 2015, 15(3): 1891-1897.
[37] [37] ERRANDONEA D, TU C Y, JIA G H, et al. Effect of pressure on the luminescence properties of Nd3+ doped SrWO4 laser crystal[J]. J Alloy Compd, 2008, 451(1/2): 212-214.
Get Citation
Copy Citation Text
LI Han, ZHOU Pengyu. Temperature and Pressure Dependences of Luminescence from Nd-Doped M′-Type Gadolinium Tantalate Microcrystals[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2493
Category:
Received: Jan. 2, 2022
Accepted: --
Published Online: Jan. 3, 2023
The Author Email: LI Han (824241761@qq.com)