Chinese Journal of Ship Research, Volume. 16, Issue 4, 86(2021)
Layout optimization design of hierarchical curvilinearly stiffened panels based on deep learning
[4] LINDGAARD E, LUND E, RASMUSSEN K. Nonlinear buckling optimization of composite structures considering "worst" shape imperfections[J]. International Journal of Solids and Structures, 47, 3186-3202(2010).
[8] [8] KAPANIA R K, LI J, KAPO H. Optimal design of unitized panels with curvilinear stiffeners[C]AIAA 5th Aviation Technology, Integration, Operations, 16th LighterThanAir Balloon Systems Conferences. Arlington: AIAA, 2005: 7482.
[14] LIU D C, HAO P, ZHANG K P et al. On the integrated design of curvilinearly grid-stiffened panel with non-uniform distribution and variable stiffener profile[J]. Materials & Design, 190, 108556(2020).
[16] [16] EMMERICH M, GIOTIS A, ÖZDEMIR M, et al. Metamodelassisted evolution strategies[C]Parallel Problem Solving From Nature—PPSN ⅤⅡ. Granada: PPSN, 2002: 361–370.
[24] HAO P, LIU D C, ZHANG K P et al. Intelligent layout design of curvilinearly stiffened panels via deep learning-based method[J]. Materials & Design, 197, 109180(2021).
[25] [25] ZHOU Z Z, ONG Y S, NGUYEN M H, et al. A study on polynomial regression Gaussian process global surrogate model in hierarchical surrogateassisted evolutionary algithm[C]2005 IEEE Congress on Evolutionary Computation. Edinburgh: IEEE, 2005: 28322839.
[29] [29] MARTÍNEZ S Z, COELLO C A C. MOEAD assisted by RBF wks f expensive multiobjective optimization problems[C]Proceedings of the 15th Annual Conference on Geic Evolutionary Computation. New Yk: GECCO, 2013: 1405–1412.
[31] [31] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: The MIT Press, 2016: 201–226.
[32] [32] BOUREAU Y L, PONCE J, LECUN Y. A theetical analysis of feature pooling in visual recognition[C]Proceedings of the 27th International Conference on Machine Learning (ICML10). Haifa, Israel: ICML, 2010.
[33] [33] WANG T, WU D J, COATES A, et al. Endtoend text recognition with convolutional neural wks[C]Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba: IEEE, 2012: 3304–3308.
[34] [34] WIJNHOVEN R G J, DE WITH P H N. Fast training of object detection using stochastic gradient descent[C]2010 20th International Conference on Pattern Recognition. Istanbul,Turkey: IEEE, 2010: 424–427.
[35] [35] ALPAYDIN E. Introduction to machine learning[M]. 4th ed. Cambridge: The MIT Press, 2020.
[36] [36] ZHANG H H, ZHANG K S. Surrogatebased optimization[M]RealWld Applications of Geic Algithms. London: Imperial College Press, 2012: 343–362.
[37] MCDONALD K, LITTLE J, PEARCY M et al. Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics[J]. Medical Engineering & Physics, 32, 653-661(2010).
[39] [39] WANG J, LIU S C, LI M C, et al. Multiobjective geic algithm strategies f burnable poison design of pressurized water react[JOL]. International Journal of Energy Research. (20200906). https:onlinelibrary.wiley.comdoiepdf10.1002er.5926.
Get Citation
Copy Citation Text
Kunpeng ZHANG, Peng HAO, Yuhui DUAN, Dachuan LIU, Bo WANG, Yutong WANG. Layout optimization design of hierarchical curvilinearly stiffened panels based on deep learning[J]. Chinese Journal of Ship Research, 2021, 16(4): 86
Category:
Received: Nov. 17, 2020
Accepted: --
Published Online: Mar. 28, 2025
The Author Email: