Chinese Journal of Ship Research, Volume. 16, Issue 4, 86(2021)

Layout optimization design of hierarchical curvilinearly stiffened panels based on deep learning

Kunpeng ZHANG1,2, Peng HAO1,2, Yuhui DUAN1,2, Dachuan LIU1,2, Bo WANG1,2, and Yutong WANG1,2
Author Affiliations
  • 1Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
  • 2State Key Laboratory of Industrial Equipment Digital Twin, Dalian University of Technology, Dalian 116024, China
  • show less
    References(33)

    [4] LINDGAARD E, LUND E, RASMUSSEN K. Nonlinear buckling optimization of composite structures considering "worst" shape imperfections[J]. International Journal of Solids and Structures, 47, 3186-3202(2010).

    [8] [8] KAPANIA R K, LI J, KAPO H. Optimal design of unitized panels with curvilinear stiffeners[C]AIAA 5th Aviation Technology, Integration, Operations, 16th LighterThanAir Balloon Systems Conferences. Arlington: AIAA, 2005: 7482.

    [14] LIU D C, HAO P, ZHANG K P et al. On the integrated design of curvilinearly grid-stiffened panel with non-uniform distribution and variable stiffener profile[J]. Materials & Design, 190, 108556(2020).

    [16] [16] EMMERICH M, GIOTIS A, ÖZDEMIR M, et al. Metamodelassisted evolution strategies[C]Parallel Problem Solving From Nature—PPSN ⅤⅡ. Granada: PPSN, 2002: 361–370.

    [24] HAO P, LIU D C, ZHANG K P et al. Intelligent layout design of curvilinearly stiffened panels via deep learning-based method[J]. Materials & Design, 197, 109180(2021).

    [25] [25] ZHOU Z Z, ONG Y S, NGUYEN M H, et al. A study on polynomial regression Gaussian process global surrogate model in hierarchical surrogateassisted evolutionary algithm[C]2005 IEEE Congress on Evolutionary Computation. Edinburgh: IEEE, 2005: 28322839.

    [29] [29] MARTÍNEZ S Z, COELLO C A C. MOEAD assisted by RBF wks f expensive multiobjective optimization problems[C]Proceedings of the 15th Annual Conference on Geic Evolutionary Computation. New Yk: GECCO, 2013: 1405–1412.

    [31] [31] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: The MIT Press, 2016: 201–226.

    [32] [32] BOUREAU Y L, PONCE J, LECUN Y. A theetical analysis of feature pooling in visual recognition[C]Proceedings of the 27th International Conference on Machine Learning (ICML10). Haifa, Israel: ICML, 2010.

    [33] [33] WANG T, WU D J, COATES A, et al. Endtoend text recognition with convolutional neural wks[C]Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba: IEEE, 2012: 3304–3308.

    [34] [34] WIJNHOVEN R G J, DE WITH P H N. Fast training of object detection using stochastic gradient descent[C]2010 20th International Conference on Pattern Recognition. Istanbul,Turkey: IEEE, 2010: 424–427.

    [35] [35] ALPAYDIN E. Introduction to machine learning[M]. 4th ed. Cambridge: The MIT Press, 2020.

    [36] [36] ZHANG H H, ZHANG K S. Surrogatebased optimization[M]RealWld Applications of Geic Algithms. London: Imperial College Press, 2012: 343–362.

    [37] MCDONALD K, LITTLE J, PEARCY M et al. Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics[J]. Medical Engineering & Physics, 32, 653-661(2010).

    [39] [39] WANG J, LIU S C, LI M C, et al. Multiobjective geic algithm strategies f burnable poison design of pressurized water react[JOL]. International Journal of Energy Research. (20200906). https:onlinelibrary.wiley.comdoiepdf10.1002er.5926.

    Tools

    Get Citation

    Copy Citation Text

    Kunpeng ZHANG, Peng HAO, Yuhui DUAN, Dachuan LIU, Bo WANG, Yutong WANG. Layout optimization design of hierarchical curvilinearly stiffened panels based on deep learning[J]. Chinese Journal of Ship Research, 2021, 16(4): 86

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 17, 2020

    Accepted: --

    Published Online: Mar. 28, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02188

    Topics