Laser & Optoelectronics Progress, Volume. 61, Issue 20, 2011019(2024)

Advancements and Future Prospects in Mid-Infrared Detection Technology Using Optical Frequency Up-Conversion

Xu Guo1,2,3,4, Pengxiang Liu1,2,3、*, Qiaoqiao Fu1,2,3,4, Feng Qi1,2,3、**, Wei Li1,2,3,4, and Weifan Li1,2,3
Author Affiliations
  • 1Shenyang Institute of Automation, Chinese Academy of Sciences,Shenyang 110169, Liaoning , China
  • 2Key Laboratory of Liaoning Province in Terahertz Imaging and Sensing, Shenyang 110169, Liaoning , China
  • 3Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(16)
    Schematic diagram of up-conversion detection system
    Mid-infrared up-conversion single photon detection based on ridge waveguide[101]
    Mid-infrared up-conversion single photon detection based on PPLN crystals[51]
    Mid-infrared few-photon spectral imaging based on up-conversion[29]
    Mid-infrared up-conversion hyperspectral imaging at wavelengths 6‒8 µm[40]
    Wideband mid-infrared imaging based on adiabatic frequency up-conversion[85]
    Mid-infrared up-conversion OCT system and OCT images of ceramic plates[43]
    Mid-infrared up-conversion 3D imaging[56]
    High sensitivity mid-infrared single pixel imaging in extremely low illumination[55]
    Mid-infrared up-conversion spectroscopic analysis with wavelength 6‒12 µm[44]
    Time-stretched mid-infrared spectral analysis based on frequency up-conversion[69]
    Quantum spectral analysis of mid-infrared up-conversion[52]
    Mid-infrared Lidar based on up-conversion[107]
    Mid-infrared free space communication system based on up-conversion[61]
    Mid-infrared up-conversion cross comb spectrum[113]
    • Table 1. Studies of mid-infrared up-conversion detection based on other crystals

      View table

      Table 1. Studies of mid-infrared up-conversion detection based on other crystals

      CrystalProbe laserProbe wavelength /μmMid-infrared targetDetection wavelength /μmRef.
      AgGaGeS4Ti∶sapphire laser0.8Optical parametric amplifier5‒1075
      LiInS2Nd∶YVO4 laser1.06Filament at 900 ℃6‒1039
      LiIO3Frequency doubled Nd∶YAG laser0.532Optical parametric amplifier2.5‒5.676
      KNbO3Ti∶sapphire laser0.8Optical parametric amplifier15.577
      HgSHe-Ne laser0.633Carbon dioxide laser10.678
      ZnGeP2Nd∶YAG laser1.06Carbon dioxide laser10.5181
      GaSeNd∶YAG laser1.06Carbon dioxide laser10.2682
      BaGa4Se7Nd∶YAG laser1.06Optical parametric oscillator3‒862
      Ag3AsS3Ruby laser0.694Carbon dioxide laser10.626
      Krypton ion laser0.753Cosmic background radiation101
      GaAsYtterbium-doped fiber laser1.5Quantum cascade laser5.479
      Thulium-doped fiber laser2Carbon dioxide laser10.680
    Tools

    Get Citation

    Copy Citation Text

    Xu Guo, Pengxiang Liu, Qiaoqiao Fu, Feng Qi, Wei Li, Weifan Li. Advancements and Future Prospects in Mid-Infrared Detection Technology Using Optical Frequency Up-Conversion[J]. Laser & Optoelectronics Progress, 2024, 61(20): 2011019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 31, 2024

    Accepted: Jul. 29, 2024

    Published Online: Nov. 4, 2024

    The Author Email: Pengxiang Liu (liupengxiang@sia.cn), Feng Qi (qifeng@sia.cn)

    DOI:10.3788/LOP241394

    CSTR:32186.14.LOP241394

    Topics