Acta Optica Sinica, Volume. 39, Issue 7, 0715002(2019)

Real-Time and Anti-Occlusion Visual Tracking Algorithm Based on Multi-Layer Deep Convolutional Features

Zhoujuan Cui1,2、*, Junshe An1, and Tianshu Cui1,2
Author Affiliations
  • 1 Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(15)
    Framework of the proposed visual tracking algorithm
    Network structure of VGG-Net-19_OT
    [in Chinese]
    Qualitative results of the 10 tracking algorithms on different video sequences. (a) Ironman 1; (b) Ironman 2; (c) Doll; (d) MotorRolling; (e) Bolt2; (f) Skiing
    Qualitative results of the 10 tracking algorithms on different occluded video sequences. (a) Jogging-1; (b) Walking2; (c) Coke; (d) Soccer
    Algorithm of OPE on OTB-2015. (a) Precision plot; (b) overlap success plot
    Algorithm of OPE on UAV123. (a) Precision plot; (b) overlap success plot
    Precision plots on 11 different attributes video sequences of OTB-2015
    Success plots on 11 different attributes video sequences of OTB-2015
    • Table 1. Parameters of VGG-Net-19

      View table

      Table 1. Parameters of VGG-Net-19

      StructureFilterOutput size /(pixel×pixel×pixel)Memory /bitParameter
      Image input224×224×3224×224×3=1505280
      Conv1_1Conv1_26464224×224×64224×224×64224×224×64=3211264224×224×64=32112643×3×3×64=17283×3×64×64=36864
      POOL1112×112×64112×112×64=8028160
      Conv2_1Conv2_2128128112×112×128112×112×128112×112×128=1605632112×112×128=16056323×3×64×128=737283×3×128×128=147456
      POOL256×56×12856×56×128=4014080
      Conv3_1Conv3_2Conv3_3Conv3_425625625625656×56×25656×56×25656×56×25656×56×25656×56×256=80281656×56×256=80281656×56×256=80281656×56×256=8028163×3×128×256=2949123×3×256×256=5898243×3×256×256=5898243×3×256×256=589824
      POOL328×28×25628×28×256=2007040
      Conv4_1Conv4_2Conv4_3Conv4_451251251251228×28×51228×28×51228×28×51228×28×51228×28×512=40140828×28×512=40140828×28×512=40140828×28×512=4014083×3×256×512=11796483×3×512×512=23592963×3×512×512=23592963×3×512×512=2359296
      POOL414×14×51214×14×512=1003520
      Conv5_1Conv5_2Conv5_3Conv5_451251251251214×14×51214×14×51214×14×51214×14×51214×14×512=10035214×14×512=10035214×14×512=10035214×14×512=1003523×3×512×512=23592963×3×512×512=23592963×3×512×512=23592963×3×512×512=2359296
      POOL57×7×5127×7×512=250880
      FC640961×1×40961×1×4096=40967×7×512×4096=102760448
      FC740961×1×40961×1×4096=40964096×4096=16777216
      FC810001×1×10001×1×1000=10004096×1000=4096000
    • Table 2. Video attributes of OTB-2015

      View table

      Table 2. Video attributes of OTB-2015

      Video attributeValueVideo attributeValue
      Background clutters (BC)31Motion blur (MB)29
      Deformation44Occlusion49
      Fast motion (FM)39Out-of-plane rotation (OPR)63
      Illumination variation (IV)38Out-of-view (OV)14
      In-plane rotation (IPR)51Scale variation (SV)64
      Low resolution (LR)9
    • Table 3. Video attributes of UAV123

      View table

      Table 3. Video attributes of UAV123

      Video attributeValueVideo attributeValue
      Scale variation (SV)109Out of view (OV)30
      Aspect ratio change (ARC)68Background clutter (BC)21
      Low resolution (LR)48Illumination variation (IV)31
      Fast motion (FM)28Viewpoint change (VC)60
      Full occlusion (FOC)33Camera motion (CM)70
      Partial occlusion (POC)73Similar object (SOB)39
    • Table 4. Precision values and success rates on 12 different attributes video sequences of UAV123

      View table

      Table 4. Precision values and success rates on 12 different attributes video sequences of UAV123

      SequenceProposed algorithmKCFHCFTstar
      Precision valueSuccess ratePrecision valueSuccess ratePrecision valueSuccess rate
      Aspect ratio change (ARC)0.6190.4640.4470.2920.6100.434
      Background clutter (BC)0.5850.4470.5360.4130.5840.470
      Camera motion (CM)0.6770.5560.5020.3660.6820.543
      Fast motion (FM)0.5440.4020.3010.2000.5160.377
      Full occlusion (FOC)0.5670.3580.4200.2430.5610.381
      Illumination variation (IV)0.6270.5060.4640.3340.6140.451
      Low resolution (LR)0.5550.3330.4350.2510.5790.346
      Out of view (OV)0.6090.5000.4060.2770.6030.467
      Partial occlusion (POC)0.6320.4990.4970.3650.6280.491
      Scale variation (SV)0.6440.5340.4970.3390.6460.498
      Similar object (SOB)0.6910.5660.6160.4180.6930.552
      Viewpoint change (VC)0.6370.4940.4500.3020.6250.440
    • Table 5. Tracking speedsframe /s

      View table

      Table 5. Tracking speedsframe /s

      SequenceBasketballFaceOcc1Football1GirlJogging1JumpingSoccerSylvesterTrellis
      Speed31.334.526.135.928.226.125.132.627.9
    • Table 6. Average tracking speed comparison for the deep learning-based tracking algorithmframe /s

      View table

      Table 6. Average tracking speed comparison for the deep learning-based tracking algorithmframe /s

      AlgorithmProposedFCNTMDNetHCFT
      Tracking speed29.63110
    Tools

    Get Citation

    Copy Citation Text

    Zhoujuan Cui, Junshe An, Tianshu Cui. Real-Time and Anti-Occlusion Visual Tracking Algorithm Based on Multi-Layer Deep Convolutional Features[J]. Acta Optica Sinica, 2019, 39(7): 0715002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 1, 2019

    Accepted: Mar. 21, 2019

    Published Online: Jul. 16, 2019

    The Author Email: Cui Zhoujuan (constance669@126.com)

    DOI:10.3788/AOS201939.0715002

    Topics