NUCLEAR TECHNIQUES, Volume. 48, Issue 4, 040601(2025)

Combined neural network-based transient thermal hydraulic parameter prediction method for fast reactor core

Ziyan ZHAO, Pengcheng ZHAO*, Zijing LIU, Wei LI, and Tao YU*
Author Affiliations
  • School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • show less
    Figures & Tables(19)
    Structure topology of RBF neural network
    Flowchart of the combined model
    Decomposition of mass flow sequence
    Decomposition of cladding temperature sequence
    Preliminary screening of SSA parameters for single-step prediction (a) Mass flow rate, (b) Temperature
    Fine screening of SSA parameters for single-step prediction (a) Mass flow rate, (b) Temperature
    Reconstruction order of single-step prediction (a) Mass flow rate, (b) Temperature
    Preliminary screening of SSA parameters for continuous prediction (a) Mass flow rate, (b) Temperature
    Fine screening of SSA parameters for continuous prediction (a) Mass flow rate, (b) Temperature
    Reconstruction order of continuous prediction (a) Mass flow rate, (b) Temperature
    Results of RBF single-step prediction (a) Mass flow rate, (b) Temperature
    Results of EMD-RBF single-step prediction (a) Mass flow rate, (b) Temperature
    Results of EMD-SSA-RBF single-step prediction (a) Mass flow rate, (b) Temperature
    Continuous prediction of mass flow
    Continuous prediction of cladding temperature
    Model calculation time
    • Table 1. Main parameters of CEFR

      View table
      View in Article

      Table 1. Main parameters of CEFR

      参数 Parameters数值Values
      功率Power / MW65
      组件内燃料棒数 Number of fuel rods in the assembly61
      活性区高度 Height of active core / mm450
      燃料棒直径 Fuel rod diameter / mm6.0
      包壳厚度 Cladding thickness / mm0.3

      芯块外径/内径

      Outer/inner diameter of fuel pellets / mm

      5.2/1/6
      定位绕丝直径 Wire diameter / mm0.95
      定位绕丝螺距 Wire pitch / mm100

      堆芯进/出口温度

      Core inlet/outlet temperature / ℃

      360/530
    • Table 2. Single-step prediction error of the model

      View table
      View in Article

      Table 2. Single-step prediction error of the model

      预测变量

      Predictive variables

      神经网络方法

      Neural network algorithm

      平均相对误差

      Mean relative error

      质量流量

      Mass flow

      冀南等的文献值The literature value of JI Nan et al.0.057 8
      本文RBF神经网络This paper presents RBF neural network0.048 8
      EMD-RBF组合神经网络EMD-RBF combined neural network0.028 6
      EMD-SSA-RBF组合神经网络EMD-SSA-RBF combined neural network0.006 5

      包壳温度

      Temperature

      冀南等的文献值The literature value of JI Nan et al.0.005 1
      本文RBF神经网络This paper presents RBF neural network0.003 8
      EMD-RBF组合神经网络EMD-RBF combined neural network0.002 1
      EMD-SSA-RBF组合神经网络EMD-SSA-RBF combined neural network0.001 5
    • Table 3. Continuous prediction errors of the model

      View table
      View in Article

      Table 3. Continuous prediction errors of the model

      预测变量

      Predictive variables

      神经网络方法

      Neural network algorithm

      平均相对误差

      Mean relative error

      质量流量

      Mass flow

      本文RBF神经网络RBF neural network presented in this paper0.050 2
      EMD-SSA-RBF组合神经网络EMD-SSA-RBF combined neural network0.021 7

      包壳温度

      Temperature

      本文RBF神经网络RBF neural network presented in this paper0.008 1
      EMD-SSA-RBF组合神经网络EMD-SSA-RBF combined neural network0.004 2
    Tools

    Get Citation

    Copy Citation Text

    Ziyan ZHAO, Pengcheng ZHAO, Zijing LIU, Wei LI, Tao YU. Combined neural network-based transient thermal hydraulic parameter prediction method for fast reactor core[J]. NUCLEAR TECHNIQUES, 2025, 48(4): 040601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR ENERGY SCIENCE AND ENGINEERING

    Received: Dec. 13, 2023

    Accepted: --

    Published Online: Jun. 3, 2025

    The Author Email: Pengcheng ZHAO (赵鹏程), Tao YU (于涛)

    DOI:10.11889/j.0253-3219.2025.hjs.48.230421

    Topics