Journal of Inorganic Materials, Volume. 35, Issue 12, 1307(2020)
[2] SEO J K, SHIN J W, CHUNG H et al. Intercalation and conversion reactions of nanosized β-MnO2 cathode in the secondary Zn/MnO2 alkaline battery[J]. The Journal of Physical Chemistry C, 122, 11177-11185(2018).
[3] XUE F, WU S, WANG M X et al. A three-dimensional graphene/ CNT/MnO2 hybrid as supercapacitor electrode[J]. Integrated Ferroelectrics, 190, 156-163(2018).
[4] GU X, YUE J, LI L J et al. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes[J]. Electrochimica Acta, 184, 250-256(2015).
[5] FENG Q, KANOH H, OOI K. Manganese oxide porous crystals[J]. Journal of Materials Chemistry, 9, 319-333(1999).
[6] POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance[C]. Proceedings of the National Academy of Sciences, 96, 3447-3454(1999).
[7] JIA Z J, WANG J, WANG Y et al. Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors[J]. Journal of Materials Science & Technology, 32, 147-152(2016).
[8] HUANG Y J, LI W S. Preparation of manganese dioxide for oxygen reduction in zinc air battery by hydro thermal method[J]. Journal of Inorganic Materials, 28, 341-346(2013).
[9] WEN J G, RUAN X Y, ZHOU Z T. Characterization of MnO2 aerogels prepared via supercritical drying technique[J]. Journal of Inorganic Materials, 24, 521-524(2009).
[10] XIAO X Z, YI Q F. Synthesis and electochemical capacity of MnO2/SMWCNT/PANI ternarycomposites[J]. Journal of Inorganic Materials, 28, 825-830(2013).
[12] ZHAO P, YAO M Q, REN H B et al. Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors[J]. Applied Surface Science, 463, 931-938(2019).
[14] LU C J, ZHU F Q, YIN J G et al. Synthesis of α-MnO2 nanowires via facile hydrothermal method and their application in Li-O2 battery[J]. Journal of Inorganic Materials, 33, 1029-1034(2018).
[15] ZHU K, WANG C, CAMARGO P H C et al. Investigating the effect of MnO2 band gap in hybrid MnO2-Au materials over the SPR-mediated activities under visible light[J]. Journal of Materials Chemistry A, 7, 925-931(2019).
[16] WANG L, MA W L, LI Y H et al. Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method. Journal of Sol-Gel Science and[J]. Technology, 82, 85-91(2017).
[17] MA Z C, WEI X Y, XING S T et al. Hydrothermal synthesis and characterization of surface-modified δ-MnO2 with high Fenton-like catalytic activity[J]. Catalysis Communications, 67, 68-71(2015).
[18] LIU D Y, DONG L M, SHAN L W et al. Preparation of Fe-MnO2/RGO electrode and electrochemical properties[J]. Ferroelectrics, 546, 41-47(2019).
[19] XIE Y M, WANG L J, GUO Q Y et al. Preparation of MnO2/porous carbon material with core-shell structure and its application in supercapacitor[J]. Journal of Materials Science Materials in Electronics, 29, 1-8(2018).
[20] MATHUR A, HALDER A. One step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc-air batteries[J]. Catalysis Science & Technology, 9, 1245-1254(2019).
[23] WANG X Y, WANG X Y, HUANG W G et al. Sol-Gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources, 140, 211-215(2005).
[26] THEISS F L, AYOKO G A, FROST R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-a review[J]. Applied Surface Science, 383, 200-213(2016).
[27] LI X L, ZHU J F, JIAO Y H et al. Manganese dioxide morphology on electrochemical performance of Ti3C2Tx@MnO2 composites[J]. Journal of Inorganic Materials, 35, 119-125(2020).
[28] MAHAMALLIK P, SAHA S, PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal, 276, 155-165(2015).
[32] SHIN J, SEO J K, YAYLIAN R et al. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems[J]. International Materials Reviews, 1-32(2019).
[33] SHAFI P M, BOSE A C. Structural evolution of tetragonal MnO2 and its electrochemical behavior[C]. AIP Conference Proceedings, 050038(1731).
[34] HAN S D, KIM S, LI D G et al. Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery[J]. Chemistry of Materials, 29, 4874-4884(2017).
[36] REHMAN S, TANG T Y, ALI Z et al. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries[J]. Small, 13, 1700087(2017).
[37] LUO P F, HUANG Z. Fabrication of scandium-doped lithium manganese oxide as a high-rate capability cathode material for lithium energy storage[J]. Solid State Ionics, 338, 20-24(2019).
[38] WANG Y M, WANG F, FENG X J. Porous nest-like LiMnPO4 microstructures assembled by nanosheets for lithium ion battery cathodes[J]. Journal of Materials Science: Materials in Electronics, 29, 1426-1434(2018).
[40] ZHAO J X, WANG G H, ZHANG Q et al. An underlying intercalation ion for fast-switching and stable electrochromism[J]. Journal of Materials Science Materials in Electronics, 30, 12753-12756(2019).
[41] LIU Y R, RYOTA S, CHEUK L H et al. Electrochromic triphenylamine-based cobalt (II) complex nanosheets[J]. Journal of Materials Chemistry C, 7, 9159-9166(2019).
[42] CHEN C W, BRIGEMAN A N, HO T J et al. Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal[J]. Optical Materials Express, 8, 691(2018).
[44] CANNAVALE A, AYR U, FIORITO F et al. Smart electrochromic windows to enhance building energy efficiency and visual comfort[J]. Energies, 13, 1449(2020).
[45] BECHINGER C, FERRERE S, ZABAN A et al. Photoelectrochromic windows and displays[J]. Nature, 383, 608-610(1996).
[46] CHO S I, KWON W J, CHOI S J et al. Nanotube-based ultrafast electrochromic display[J]. Advanced Materials, 17, 171-175(2005).
[47] ZHOU D, CHE B Y, LU X H. Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials[J]. Journal of Materials Chemistry C, 1758-1766(2017).
[48] SAKAI N, EBINA Y, TAKADA K et al. Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency[J]. Journal of the Electrochemical Society, 152, E384-E389(2005).
[49] FALAHATGAR S S, GHODSI F E, TEPEHAN F Z et al. Electrochromic performance of Sol-Gel derived amorphous MnO2-ZnO nanogranular composite thin films[J]. Journal of Non-Crystalline Solids, 427, 1-9(2015).
[50] LYU W M, YANG L, FAN B B et al. Silylated MgAl LDHs intercalated with MnO2 nanowires: highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene[J]. Chemical Engineering Journal, 263, 309-316(2015).
Get Citation
Copy Citation Text
Jinmin WANG, Hongyu YU, Dongyun MA.
Category: REVIEW
Received: Mar. 2, 2020
Accepted: --
Published Online: Mar. 10, 2021
The Author Email: