Photonic Sensors, Volume. 15, Issue 1, 250123(2025)
Micro/Nano Lasers for Biomolecular Sensing and Cellular Analysis
[1] [1] X. Fan and S. H. Yun, “The potential of optofluidic biolasers,”Nature Methods, 2014, 11(2): 141–147.
[2] [2] S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. Yang, “Semiconductor nanowire lasers,”Nature Reviews Materials, 2016, 1(6): 1–11.
[3] [3] Y. C. Chen and X. Fan, “Biological lasers for biomedical applications,”Advanced Optical Materials, 2019, 7(17): 1900377.
[4] [4] S. J. J. Kwok, N. Martino, P. H. Dannenberg, and S. H. Yun, “Multiplexed laser particles for spatially resolved single-cell analysis,”Light: Science & Applications, 2019, 8(1): 74.
[5] [5] R. M. Ma and R. F. Oulton, “Applications of nanolasers,”Nature Nanotechnology, 2019, 14(1): 12–22.
[6] [6] V. D. Ta, Y. Wang, and H. Sun, “Microlasers enabled by soft‐matter technology,”Advanced Optical Materials, 2019, 7(17): 1900057.
[7] [7] K. Y. Jeong, M. S. Hwang, J. Kim, J. S. Park, J. M. Lee, and H. G. Park, “Recent progress in nanolaser technology,”Advanced Materials, 2020, 32(51): 2001996.
[8] [8] N. Toropov, G. Cabello, M. P. Serrano, R. R. Gutha, M. Rafti, and F. Vollmer, “Review of biosensing with whispering-gallery mode lasers,”Light: Science & Applications, 2021, 10(1): 1–19.
[9] [9] N. Toropov and F. Vollmer, “Whispering-gallery microlasers for cell tagging and barcoding: the prospects for in vivo biosensing,”Light: Science & Applications, 2021, 10(1): 77.
[10] [10] X. Yang, C. Gong, C. Zhang, Y. Wang, G. Yan, L. Wei,et al., “Fiber optofluidic microlasers: Structures, characteristics, and applications,”Laser & Photonics Reviews, 2022, 16(1): 2100171.
[11] [11] H. Deng, G. L. Lippi, J. Mrk, J. Wiersig, and S. Reitzenstein, “Physics and applications of high- micro- and nanolasers,”Advanced Optical Materials, 2021, 9(19): 2100415.
[12] [12] D. Ni, M. Spth, F. Klmpfl, and M. Hohmann, “Properties and applications of random lasers as emerging light sources and optical sensors: a review,”Sensors, 2023, 23(1): 247.
[13] [13] X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,”Nature Communications, 2014, 5: 3779.
[14] [14] Y. C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,”Nature Biomedical Engineering, 2017, 1(9): 724–735.
[15] [15] M. Schubert, L. Woolfson, I. R. M. Barnard, A. M. Dorward, B. Casement, A. Morton,et al., “Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers,”Nature Photonics, 2020, 14(7): 452–458.
[16] [16] N. Martino, S. J. J. Kwok, A. C. Liapis, S. Forward, H. Jang, H. M. Kim,et al., “Wavelength-encoded laser particles for massively multiplexed cell tagging,”Nature Photonics, 2019, 13(10): 720–727.
[17] [17] E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Dring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,”Advanced Optical Materials, 2014, 2(2): 137–141.
[18] [18] M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel,et al., “Flexible and ultra-lightweight polymer membrane lasers,”Nature Communications, 2018, 9(1): 1525.
[19] [19] X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,”Applied Physics Letters, 2017, 111(3): 031112.
[20] [20] X. Wu, Q. Chen, P. Xu, Y. C. Chen, B. Wu, R. M. Coleman,et al., “Nanowire lasers as intracellular probes,”Nanoscale, 2018, 10(20): 9729–9735.
[21] [21] M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell,et al., “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,”Nano Letters, 2015, 15(8): 5647–5652.
[22] [22] W. Lee and X. Fan, “Intracavity DNA melting analysis with optofluidic lasers,”Analytical Chemistry, 2012, 84(21): 9558–9563.
[23] [23] Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,”Angewandte Chemie −International Edition, 2012, 51(5): 1236–1239.
[24] [24] W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,”Lab on a Chip, 2016, 16(24): 4770–4776.
[25] [25] M. Hou, X. Liang, T. Zhang, C. Qiu, J. Chen, S. Liu,et al., “DNA melting analysis with optofluidic lasers based on Fabry-Perot microcavity,”ACS Sensors, 2018, 3(9): 1750–1755.
[26] [26] Q. Chen, Y. C. Chen, Z. Zhang, B. Wu, R. Coleman, and X. Fan, “An integrated microwell array platform for cell lasing analysis,”Lab on a Chip, 2017, 17(16): 2814–2820.
[27] [27] Y. C. Chen, Q. Chen, X. Tan, G. Chen, I. Bergin, M. N. Aslam,et al., “Chromatin laser imaging reveals abnormal nuclear changes for early cancer detection,”Biomedical Optics Express, 2019, 10(2): 838–854.
[28] [28] P. L. Gourley, “Semiconductor microlasers: a new approach to cell-structure analysis,”Nature Medicine, 1996, 2(8): 942–944.
[29] [29] P. L. Gourley, A. E. McDonald, J. K. Hendricks, G. C. Copeland, J. Hunter, O. Akhil,et al., “Nanolaser/microfluidic bioChip for realtime tumor pathology,”Biomedical Microdevices, 1999, 2(2): 111–122.
[30] [30] P. L. Gourley, “Biocavity laser for high-speed cell and tumour biology,”Journal of Physics D: Applied Physics, 2003, 36(14): R228.
[31] [31] P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley,et al., “Ultrafast nanolaser flow device for detecting cancer in single cells,”Biomedical Microdevices, 2005, 7(4): 331–339.
[32] [32] Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,”Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(37): 16039–16042.
[33] [33] M. C. Gather and S. H. Yun, “Single-cell biological lasers,”Nature Photonics, 2011, 5(7): 406–410.
[34] [34] M. Humar and S. H. Yun, “Intracellular microlasers,”Nature Photonics, 2015, 9(9): 572–576.
[35] [35] M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,”Nature Communications, 2014, 5(1): 5722.
[36] [36] W. Zhang, J. Yao, and Y. S. Zhao, “Organic micro/nanoscale lasers,”Accounts of Chemical Research, 2016, 49(9): 1691–1700.
[37] [37] T. Pan, D. Lu, H. Xin, and B. Li, “Biophotonic probes for bio-detection and imaging,”Light: Science & Applications, 2021, 10(1): 124.
[38] [38] E. A. Prasetyanto, H. S. Wasisto, and D. Septiadi, “Cellular lasers for cell imaging and biosensing,”Acta Biomaterialia, 2022, 143: 39–51.
[39] [39] P. Sarbadhikary, B. P. George, and H. Abrahamse, “Paradigm shift in future biophotonics for imaging and therapy: miniature living lasers to cellular scale optoelectronics,”Theranostics, 2022, 12(17): 7335–7350.
[40] [40] H. Shan, H. Dai, and X. Chen, “Monitoring various bioactivities at the molecular, cellular, tissue, and organism levels via biological lasers,”Sensors, 2022, 22(9): 3149.
[41] [41] Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,”Lab on a Chip, 2013, 13(14): 2679–2681.
[42] [42] X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,”Applied Physics Letters, 2013, 102(20): 203706.
[43] [43] Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,”Lab on a Chip, 2014, 14(24): 4590–4595.
[44] [44] Y. C. Chen, Q. Chen, and X. Fan, “Lasing in blood,”Optica, 2016, 3(8): 809.
[45] [45] C. Gong, Y. Gong, M. K. K. Oo, Y. Wu, Y. Rao, X. Tan,et al., “Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme,”Biosensors & Bioelectronics, 2017, 96: 351–357.
[46] [46] X. Tan, Q. Chen, H. Zhu, S. Zhu, Y. Gong, X. Wu,et al., “Fast and reproducible ELISA laser platform for ultrasensitive protein quantification,”ACS Sensors, 2020, 5(1): 110–117.
[47] [47] A. H. Fikouras, M. Schubert, M. Karl, J. D. Kumar, S. J. Powis, A. Di Falco,et al., “Non-obstructive intracellular nanolasers,”Nature Communications, 2018, 9(1): 4817.
[48] [48] C. Foucher, B. Guilhabert, J. Herrnsdorf, N. Laurand, and M. D. Dawson, “Diode-pumped, mechanically-flexible polymer DFB laser encapsulated by glass membranes,”Optics Express, 2014, 22(20): 24160–24168.
[49] [49] C. S. Wu, M. K. K. Oo, and X. Fan, “Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes,”ACS Nano, 2010, 4(10): 5897–5904.
[50] [50] Q. Chen, A. Kiraz, and X. Fan, “Optofluidic FRET lasers using aqueous quantum dots as donors,”Lab on a Chip, 2016, 16(2): 353–359.
[51] [51] L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,”Applied Physics Letters, 2005, 86(9): 091114.
[52] [52] B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,”Nature Nanotechnology, 2015, 10(11): 924–936.
[53] [53] M. J. Schnermann, “Organic dyes for deep bioimaging,”Nature, 2017, 551(7679): 176–177.
[54] [54] S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,”Advanced Materials, 2013, 25(41): 5943–5947.
[55] [55] H. J. Oh, M. C. Gather, J. J. Song, and S. H. Yun, “Lasing from fluorescent protein crystals,”Optics Express, 2014, 22(25): 31411–31416.
[56] [56] E. A. Anashkina, “Laser sources based on rare-earth ion doped tellurite glass fibers and microspheres,”Fibers, 2020, 8(5): 30.
[57] [57] R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee,et al., “Nanowire-based single-cell endoscopy,”Nature Nanotechnology, 2012, 7(3): 191–196.
[58] [58] G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir,et al., “Single-cell photonic nanocavity probes,”Nano Letters, 2013, 13(11): 4999–5005.
[59] [59] S. Cho, M. Humar, N. Martino, and S. H. Yun, “Laser particle stimulated emission microscopy,”Physical Review Letters, 2016, 117(19): 193902.
[60] [60] M. Saldutti, M. Xiong, E. Dimopoulos, Y. Yu, M. Gioannini, and J. Mrk, “Modal properties of photonic crystal cavities and applications to lasers,”Nanomaterials, 2021, 11(11): 3030.
[61] [61] D. Conteduca, C. Reardon, M. G. Scullion, F. Dell’Olio, M. N. Armenise, T. F. Krauss,et al., “Ultra-highQ/Vhybrid cavity for strong light-matter interaction,”APL Photonics, 2017, 2(8): 086101.
[62] [62] Z. Yuan, X. Cheng, T. Li, Y. Zhou, Y. Zhang, X. Gong,et al., “Light-harvesting in biophotonic optofluidic microcavities via whispering-gallery modes,”ACS Applied Materials & Interfaces, 2021, 13(31): 36909–36918.
[63] [63] S. Zhao, G. Li, X. Peng, J. Ma, Z. Yin, and Q. Zhao, “Ultralow-threshold green fluorescent protein laser based on highQmicrobubble resonators,”Optics Express, 2022, 30(13): 23439–23447.
[64] [64] J. Ma, S. Zhao, X. Peng, G. Li, Y. Wang, B. Zhang,et al., “An mCherry biolaser based on microbubble cavity with ultra-low threshold,”Applied Physics Letters, 2023, 123(5): 054103.
[65] [65] P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu,et al., “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,”Nano Letters, 2015, 15(11): 7581–7586.
[66] [66] C. Z. Ning, “Semiconductor nanolasers and the size-energy-efficiency challenge: a review,”Advanced Photonics, 2019, 1(01): 1.
[67] [67] S. J. Tang, P. H. Dannenberg, A. C. Liapis, N. Martino, Y. Zhuo, Y. F. Xiao,et al., “Laser particles with omnidirectional emission for cell tracking,”Light: Science & Applications, 2021, 10(1): 23.
[68] [68] Y. Zhang, C. Hamsen, J. T. Choy, Y. Huang, J. H. Ryou, R. D. Dupuis,et al., “Photonic crystal disk lasers,”Optics Letters, 2011, 36(14): 2704.
[69] [69] Y. C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-QFabry-Perot microcavities,”Lab on a Chip, 2017, 17(3): 538–548.
[70] [70] W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-QFabry-Prot microcavities,”Lab on a Chip, 2015, 15(19): 3862–3869.
[71] [71] P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,”Optics Letters, 2010, 35(21): 3556–3558.
[72] [72] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hnsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,”New Journal of Physics, 2010, 12(6): 065038.
[73] [73] A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,”Optics Letters, 2010, 35(13): 2293–2295.
[74] [74] A. A. P. Trichet, P. R. Dolan, D. James, G. M. Hughes, C. Vallance, and J. M. Smith, “Nanoparticle trapping and characterization using open microcavities,”Nano Letters, 2016, 16(10): 6172–6177.
[75] [75] Z. Yuan, X. Cheng, Y. Zhou, X. Tan, X. Gong, H. Rivy,et al., “Distinguishing small molecules in microcavity with molecular laser polarization,”ACS Photonics, 2020, 7(8): 1908–1914.
[76] [76] X. Wu, Q. Chen, Y. Wang, X. Tan, and X. Fan, “Stable high-Qbouncing ball modes inside a Fabry-Prot cavity,”ACS Photonics, 2019, 6(10): 2470–2478.
[77] [77] X. Wu, Y. Wang, Q. Chen, Y. C. Chen, X. Li, L. Tong,et al., “High-Q, low-mode-volume microsphere-integrated Fabry-Perot cavity for optofluidic lasing applications,”Photonics Research, 2019, 7(1): 50.
[78] [78] Y. Ma, X. Guo, X. Wu, L. Dai, and L. Tong, “Semiconductor nanowire lasers,”Advances in Optics and Photonics, 2013, 5(3): 216.
[79] [79] X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,”Laser & Photonics Reviews, 2013, 7(6): 855–881.
[80] [80] M. H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma,et al., “Wavelength-tunable micro/nanolasers,”Advanced Optical Materials, 2019, 7(17): 1900275.
[81] [81] S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,”Optics Express, 2009, 17(13): 10881–10886.
[82] [82] X. Wu and Y. Wang, “A physics-based machine learning approach for modeling the complex reflection coefficients of metal nanowires,”Nanotechnology, 2022, 33(20): 205701.
[83] [83] X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: From subwavelength waveguides to optical sensors,”Accounts of Chemical Research, 2014, 47(2): 656–666.
[84] [84] H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu,et al., “Plasmon waveguiding in nanowires,”Chemical Reviews, 2018, 118(6): 2882–2926.
[85] [85] Y. Wang, X. Wu, and P. Wang, “Asymmetric cavity mode engineering in a single plasmonic nanowire,”Journal of Lightwave Technology, 2021, 39(18): 5855–5863.
[86] [86] Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,”Optics Express, 2012, 20(17): 19006.
[87] [87] S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,”ACS Nano, 2012, 6(9): 8128–8135.
[88] [88] Y. Wang, Y. Feng, L. Zeng, and X. Wu, “Versatile and high-quality manipulation of asymmetric modes in bent metal nanowires,”Optical Materials Express, 2022, 12(7): 2782.
[89] [89] S. Nauert, A. Paul, Y. R. Zhen, D. Solis, L. Vigderman, W. S. Chang,et al., “Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires,”ACS Nano, 2014, 8(1): 572–580.
[90] [90] A. Luo, Y. Feng, C. Zhu, Y. Wang, and X. Wu, “Transfer learning for modeling plasmonic nanowire waveguides,”Nanomaterials, 2022, 12(20): 3624.
[91] [91] Y. Wang, A. Luo, C. Zhu, Z. Li, and X. Wu, “Ultra-confined propagating exciton–plasmon polaritons enabled by cavity-free strong coupling: Beating plasmonic trade-offs,”Nanoscale Research Letters, 2022, 17(1): 109.
[92] [92] H. Wu, L. Yang, P. Xu, J. Gong, X. Guo, P. Wang,et al., “Photonic nanolaser with extreme optical field confinement,”Physical Review Letters, 2022, 129(1): 013902.
[93] [93] Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang,et al., “Single-nanowire single-mode laser,”Nano Letters, 2011, 11(3): 1122–1126.
[94] [94] Z. Hu, X. Guo, and L. Tong, “Freestanding nanowire ring laser,”Applied Physics Letters, 2013, 103(18): 183104.
[95] [95] X. Wu and L. Tong, “Optical microfibers and nanofibers,”Nanophotonics, 2013, 2(5–6): 407–428.
[96] [96] Y. Wang, X. Guo, L. Tong, and J. Lou, “Modeling of Au-nanowire waveguide for plasmonic sensing in liquids,”Journal of Lightwave Technology, 2014, 32(21): 4233–4238.
[97] [97] L. Tong, “Micro/nanofibre optical sensors: challenges and prospects,”Sensors, 2018, 18(3): 903.
[98] [98] S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka,et al., “Photonic crystal point-shift nanolasers with and without nanoslots − design, fabrication, lasing, and sensing characteristics,”IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1632–1647.
[99] [99] J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,”Nanophotonics, 2018, 7(1): 1–38.
[100] [100] T. Baba, “Photonic and iontronic sensing in GaInAsP semiconductor photonic crystal nanolasers,”Photonics, 2019, 6(2): 65.
[101] [101] Q. Shi, J. Zhao, and L. Liang, “Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: a review,”Progress in Quantum Electronics, 2021, 77: 100298.
[102] [102] M. Notomi, “Manipulating light with strongly modulated photonic crystals,”Reports on Progress in Physics, 2010, 73(9): 096501.
[103] [103] J. E. Baker, R. Sriram, and B. L. Miller, “Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors,”Lab on a Chip, 2017, 17(9): 1570–1577.
[104] [104] K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe,et al., “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,”Biosensors and Bioelectronics, 2018, 117: 161–167.
[105] [105] T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with aQfactor exceeding eleven million,”Optics Express, 2017, 25(3): 1769.
[106] [106] S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe,et al., “Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors,”Optics Express, 2013, 21(10): 12815–12821.
[107] [107] R. M. Ma and S. Y. Wang, “Plasmonic nanolasers: fundamental properties and applications,”Nanophotonics, 2021, 10(14): 3623–3633.
[108] [108] H. Wu, Y. Gao, P. Xu, X. Guo, P. Wang, D. Dai,et al., “Plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale,”Advanced Optical Materials, 2019, 7(17): 1900334.
[109] [109] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta,et al., “Single-molecule strong coupling at room temperature in plasmonic nanocavities,”Nature, 2016, 535(7610): 127–130.
[110] [110] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov,et al., “Demonstration of a spaser-based nanolaser,”Nature, 2009, 460(7259): 1110–1112.
[111] [111] E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington,et al., “Spaser as a biological probe,”Nature Communications, 2017, 8(1): 15528.
[112] [112] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng,et al., “Room-temperature subwavelength metallo-dielectric lasers,”Nature Photonics, 2010, 4(6): 395–399.
[113] [113] S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee,et al., “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,”Nano Letters, 2010, 10(9): 3679–3683.
[114] [114] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai,et al., “Plasmon lasers at deep subwavelength scale,”Nature, 2009, 461(7264): 629–632.
[115] [115] R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,”Nature Materials, 2011, 10(2): 110–113.
[116] [116] R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,”Nature Nanotechnology, 2014, 9(8): 600–604.
[117] [117] X. Y. Wang, Y. L. Wang, S. Wang, B. Li, X. W. Zhang, L. Dai,et al., “Lasing enhanced surface plasmon resonance sensing,”Nanophotonics, 2017, 6(2): 472–478.
[118] [118] X. Wu, Y. Xiao, C. Meng, X. Zhang, S. Yu, Y. Wang,et al., “Hybrid photon-plasmon nanowire lasers,”Nano Letters, 2013, 13(11): 5654–5659.
[119] [119] C. Gong, Z. Qiao, Z. Yuan, S. H. Huang, W. Wang, P. C. Wu,et al., “Topological encoded vector beams for monitoring amyloid-lipid interactions in microcavity,”Advanced Science, 2021, 8(12): 2100096.
[120] [120] C. Wang, C. Gong, Y. Zhang, Z. Qiao, Z. Yuan, Y. Gong,et al., “Programmable rainbow-colored optofluidic fiber laser encoded with topologically structured chiral droplets,”ACS Nano, 2021, 15(7): 11126–11136.
[121] [121] M. Papi, U. Mur, K. P. Zuhail, M. Ravnik, I. Muevi, and M. Humar, “Topological liquid crystal superstructures as structured light lasers,”Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(49): e2110839118.
[122] [122] M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,”Nature Photonics, 2009, 3(10): 595–600.
[123] [123] M. Humar and I. Muevi, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,”Optics Express, 2011, 19(21): 19836.
[124] [124] H. Abbaszadeh, M. Fruchart, W. Van Saarloos, and V. Vitelli, “Liquid-crystal-based topological photonics,”Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(4): e2020525118.
[125] [125] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljai, “Topological nature of optical bound states in the continuum,”Physical Review Letters, 2014, 113(25): 257401.
[126] [126] S. I. Azzam and A. V. Kildishev, “Photonic bound states in the continuum: from basics to applications,”Advanced Optical Materials, 2021, 9(1): 2001469.
[127] [127] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kant, “Lasing action from photonic bound states in continuum,”Nature, 2017, 541(7636): 196–199.
[128] [128] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu,et al., “Ultrafast control of vortex microlasers,”Science, 2020, 367(6481): 1018–1021.
[129] [129] Y. Ren, P. Li, Z. Liu, Z. Chen, Y. L. Chen, C. Peng,et al., “Low-threshold nanolasers based on miniaturized bound states in the continuum,”Science Advances, 2022, 8(51): eade8817.
[130] [130] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Qphotonic crystal nanocavities realized by the local width modulation of a line defect,”Applied Physics Letters, 2006, 88(4): 041112.
[131] [131] T. Watanabe, Y. Saijo, Y. Hasegawa, K. Watanabe, Y. Nishijima, and T. Baba, “Ion-sensitive photonic-crystal nanolaser sensors,”Optics Express, 2017, 25(20): 24469–24479.
[132] [132] S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev,et al., “Ten years of spasers and plasmonic nanolasers,”Light: Science & Applications, 2020, 9(1): 90.
[133] [133] R. Matthes, C. P. Cain, and D. Courant, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 m,”Health Physics, 2000, 79(4): 431–440.
[134] [134] H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,”Scientific Reports, 2015, 5(1): 18310.
[135] [135] S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang,et al., “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,”Optics Express, 2007, 15(23): 15523–15530.
[136] [136] H. Dai, B. Jiang, C. Yin, Z. Cao, and X. Chen, “Ultralow-threshold continuous-wave lasing assisted by a metallic optofluidic cavity exploiting continuous pump,”Optics Letters, 2018, 43(4): 847.
[137] [137] A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian,et al., “Continuous-wave upconverting nanoparticle microlasers,”Nature Nanotechnology, 2018, 13(7): 572–577.
[138] [138] A. Fernandez-Bravo, D. Wang, E. S. Barnard, A. Teitelboim, C. Tajon, J. Guan,et al., “Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons,”Nature Materials, 2019, 18(11): 1172–1176.
[139] [139] F. Xu, Y. C. Zhu, Z. Y. Ma, W. W. Zhao, J. J. Xu, and H. Y. Chen, “An ultrasensitive energy-transfer based photoelectrochemical protein biosensor,”Chemical Communications, 2016, 52(14): 3034–3037.
[140] [140] D. Etezadi, J. B. Warner IV, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,”Light: Science & Applications, 2017, 6(8): e17029–e17029.
[141] [141] Z. Mazouz, M. Mokni, N. Fourati, C. Zerrouki, F. Barbault, M. Seydou,et al., “Computational approach and electrochemical measurements for protein detection with MIP-based sensor,”Biosensors and Bioelectronics, 2020, 151: 111978.
[142] [142] S. Aitekenov, A. Gaipov, and R. Bukasov, “Review: detection and quantification of proteins in human urine,”Talanta, 2021, 223: 121718.
[143] [143] P. Niu, J. Jiang, K. Liu, S. Wang, T. Wang, Y. Liu,et al., “High-sensitive and disposable myocardial infarction biomarker immunosensor with optofluidic microtubule lasing,”Nanophotonics, 2022, 11(14): 3351–3364.
[144] [144] C. Gong, Y. Gong, Q. Chen, Y. J. Rao, G. D. Peng, and X. Fan, “Reproducible fiber optofluidic laser for disposable and array applications,”Lab on a Chip, 2017, 17(20): 3431–3436.
[145] [145] C. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan,et al., “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,”Lab on a Chip, 2018, 18(18): 2741–2748.
[146] [146] X. Yang, Y. Luo, Y. Liu, C. Gong, Y. Wang, Y. J. Rao,et al., “Mass production of thin-walled hollow optical fibers enables disposable optofluidic laser immunosensors,”Lab on a Chip, 2020, 20(5): 923–930.
[147] [147] X. Yang, C. Gong, Y. Wang, Y. Luo, Y. J. Rao, G. D. Peng,et al., “A sequentially bioconjugated optofluidic laser for wash-out-free and rapid biomolecular detection,”Lab on a Chip, 2021, 21(9): 1686–1693.
[148] [148] Z. Yuan, X. Tan, X. Gong, C. Gong, X. Cheng, S. Feng,et al., “Bioresponsive microlasers with tunable lasing wavelength,”Nanoscale, 2021, 13(3): 1608–1615.
[149] [149] X. Gong, Z. Qiao, P. Guan, S. Feng, Z. Yuan, C. Huang,et al., “Hydrogel microlasers for versatile biomolecular analysis based on a lasing microarray,”Advanced Photonics Research, 2020, 1(1): 2000041.
[150] [150] Z. Wang, Y. Zhang, X. Gong, Z. Yuan, S. Feng, T. Xu,et al., “Bio-electrostatic sensitive droplet lasers for molecular detection,”Nanoscale Advances, 2020, 2(7): 2713–2719.
[151] [151] K. K. Chan, L. W. Shang, Z. Qiao, Y. Liao, M. Kim, and Y. C. Chen, “Monitoring amyloidogenesis with a 3D deep-learning-guided biolaser imaging array,”Nano Letters, 2022, 22(22): 8949–8956.
[152] [152] Z. Wang, Y. Liu, C. Gong, Z. Yuan, L. Shen, P. Chang,et al., “Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay,”PhotoniX, 2021, 2(1): 18.
[153] [153] Z. Wang, G. Fang, Z. Gao, Y. Liao, C. Gong, M. Kim,et al., “Autonomous microlasers for profiling extracellular vesicles from cancer spheroids,”Nano Letters, 2023, 23(7): 2502–2510.
[154] [154] Y. Zhang, C. Zhang, Y. Fan, Z. Liu, F. Hu, and Y. S. Zhao, “Smart protein-based biolasers: an alternative way to protein conformation detection,”ACS Applied Materials & Interfaces, 2021, 13(16): 19187–19192.
[155] [155] S. Caixeiro, C. Kunstmann-Olsen, M. Schubert, J. Hill, I. R. M. Barnard, M. D. Simmons,et al., “Local sensing of absolute refractive index during protein-binding using microlasers with spectral encoding,”Advanced Optical Materials, 2023, 11(13): 2300530.
[156] [156] A. Capocefalo, S. Gentilini, L. Barolo, P. Baiocco, C. Conti, and N. Ghofraniha, “Biosensing with free space whispering gallery mode microlasers,”Photonics Research, 2023, 11(5): 732.
[157] [157] M. Aas, Q. Chen, A. Jonas, A. Kiraz, and X. Fan, “Optofluidic FRET lasers and their applications in novel photonic devices and biochemical sensing,”IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4): 7000215.
[158] [158] Y. C. Chen, Q. Chen, X. Wu, X. Tan, J. Wang, and X. Fan, “A robust tissue laser platform for analysis of formalin-fixed paraffin-embedded biopsies,”Lab on a Chip, 2018, 18(7): 1057–1065.
[159] [159] X. Yang, W. Shu, Y. Wang, Y. Gong, C. Gong, Q. Chen,et al., “Turbidimetric inhibition immunoassay revisited to enhance its sensitivity via an optofluidic laser,”Biosensors & Bioelectronics, 2019, 131: 60–66.
[160] [160] C. Gong, Z. Qiao, S. Zhu, W. Wang, and Y. C. Chen, “Self-assembled biophotonic lasing network driven by amyloid fibrils in microcavities,”ACS Nano, 2021, 15(9): 15007–15016.
[161] [161] Z. Yuan, Y. Zhou, Z. Qiao, C. Eng Aik, W. C. Tu, X. Wu,et al., “Stimulated chiral light-matter interactions in biological microlasers,”ACS Nano, 2021, 15(5): 8965–8975.
[162] [162] R. Abe, T. Takeda, R. Shiratori, S. Shirakawa, S. Saito, and T. Baba, “Optimization of an H0 photonic crystal nanocavity using machine learning,”Optics Letters, 2020, 45(2): 319–322.
[163] [163] Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,”Optics Express, 2006, 14(22): 10494–10499.
[164] [164] Z. Li and D. Psaltis, “Optofluidic distributed feedback dye lasers,”IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2): 185–193.
[165] [165] M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,”Applied Physics Letters, 2008, 93(11): 111113.
[166] [166] M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,”Applied Physics Letters, 2008, 92(26): 261502.
[167] [167] C. Vannahme, M. C. Leung, F. Richter, C. L. C. Smith, P. G. Hermannsson, and A. Kristensen, “Nanoimprinted distributed feedback lasers comprising TiO2 thin films: design guidelines for high performance sensing,”Laser & Photonics Reviews, 2013, 7(6): 1036–1042.
[168] [168] A. Retolaza, J. Martinez-Perdiguero, S. Merino, M. Morales-Vidal, P. G. Boj, J. A. Quintana,et al., “Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker,”Sensors and Actuators B: Chemical, 2016, 223: 261–265.
[169] [169] P. Zeng, Y. Zhou, B. Wang, X. Li, Q. Ou, X. Wu,et al., “Nanoimprinted organic distributed feedback biosensors breaking the trade-off between sensitivity and threshold,”Organic Electronics, 2020, 85: 105851.
[170] [170] Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,”Optics Express, 2006, 14(2): 696–701.
[171] [171] A. M. Haughey, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. A. Burley, M. D. Dawson,et al., “An organic semiconductor laser based on star-shaped truxene-core oligomers for refractive index sensing,”Sensors and Actuators B: Chemical, 2013, 185: 132–139.
[172] [172] M. Umar, K. Min, H. Jeon, and S. Kim, “Single-mode distributed feedback laser operation with no dependence on the morphology of the gain medium: single-mode distributed feedback laser operation,”Annalen der Physik, 2017, 529(6): 1700034.
[173] [173] T. Sano, R. Losakul, and H. Schmidt, “Dual optofluidic distributed feedback dye lasers for multiplexed biosensing applications,”Scientific Reports, 2023, 13(1): 16824.
[174] [174] T. Sano, H. Zhang, R. Losakul, and H. Schmidt, “All-in-one optofluidic chip for molecular biosensing assays,”Biosensors, 2022, 12(7): 501.
[175] [175] S. Caixeiro, M. Gaio, B. Marelli, F. G. Omenetto, and R. Sapienza, “Silk-based biocompatible random lasing,”Advanced Optical Materials, 2016, 4(7): 998–1003.
[176] [176] X. Liu, T. Li, T. Yi, C. Wang, J. Li, M. Xu,et al., “Random laser action from a natural flexible biomembrane-based device,”Journal of Modern Optics, 2016, 63(13): 1248–1253.
[177] [177] X. Li, F. Gong, D. Liu, S. He, H. Yuan, L. Dai,et al., “A lotus leaf based random laser,”Organic Electronics, 2019, 69: 216–219.
[178] [178] C. S. Wang, T. Y. Chang, T. Y. Lin, and Y. F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,”Scientific Reports, 2014, 4: 6736.
[179] [179] S. W. Chen, J. Y. Lu, B. Y. Hung, M. Chiesa, P. H. Tung, J. H. Lin,et al., “Random lasers from photonic crystal wings of butterfly and moth for speckle-free imaging,”Optics Express, 2021, 29(2): 2065–2076.
[180] [180] F. Lahoz, A. Acebes, T. Gonzlez-Hernndez, S. de Armas-Rillo, K. Soler-Carracedo, G. Cuesto,et al., “Random lasing in brain tissues,”Organic Electronics, 2019, 75: 105389.
[181] [181] F. Lahoz, I. R. Martn, M. Urgells, J. Marrero-Alonso, R. Marn, C. J. Saavedra,et al., “Random laser in biological tissues impregnated with a fluorescent anticancer drug,”Laser Physics Letters, 2015, 12(4): 045805.
[182] [182] Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang,et al., “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,”Scientific Reports, 2017, 7(1): 8385.
[183] [183] M. Hohmann, D. Drner, F. Mehari, C. Chen, M. Spth, S. Mller,et al., “Investigation of random lasing as a feedback mechanism for tissue differentiation during laser surgery,”Biomedical Optics Express, 2019, 10(2): 807–816.
[184] [184] D. Zhang, Y. Wang, J. Tang, and H. Mu, “Random laser marked PLCD1 gene therapy effect on human breast cancer,”Journal of Applied Physics, 2019, 125(20): 203102.
[185] [185] M. Hohmann, M. Spth, D. Ni, D. Drner, B. Lengenfelder, F. Klmpfl,et al., “Random laser as a potential tool for the determination of the scattering coefficient,”Biomedical Optics Express, 2021, 12(9): 5439–5451.
[186] [186] M. C. A. de Oliveira, F. W. S. de Sousa, F. A. Santos, L. M. G. Abego, M. A. R. C. Alencar, J. J. Rodrigues,et al., “Dye-doped electrospun fibers for use as random laser generator: The influence of spot size and scatter concentration,”Optical Materials, 2020, 101: 109722.
[187] [187] F. Tommasi, E. Ignesti, L. Fini, F. Martelli, and S. Cavalieri, “Random laser based method for direct measurement of scattering properties,”Optics Express, 2018, 26(21): 27615–27627.
[188] [188] T. Okamoto and S. Adachi, “Effect of particle size and shape on nonresonant random laser action of dye-doped polymer random media,”Optical Review, 2010, 17(3): 300–304.
[189] [189] S. Ning, K. Dai, N. Zhang, Y. Zhang, Y. Wu, J. Huang,et al., “Improving the random lasing performance using Au@SiO2 nanocubes-silver film hybrid structure,”Journal of Luminescence, 2021, 231: 117788.
[190] [190] J. Kitur, G. Zhu, M. Bahoura, and M. A. Noginov, “Dependence of the random laser behavior on the concentrations of dye and scatterers,”Journal of Optics, 2010, 12(2): 024009.
[191] [191] Y. Li, K. Xie, X. Zhang, Z. Hu, J. Ma, X. Chen,et al., “Coherent random lasing realized in polymer vesicles,”Photonic Sensors, 2020, 10(3): 254–264.
[192] [192] J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song,et al., “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,”Optics Communications, 2012, 285(24): 5276–5282.
[193] [193] X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive regimes for macroporous silica-based systems with tunable scattering strength,”Optics Express, 2010, 18(12): 12153–12160.
[194] [194] M. Gaio, S. Caixeiro, B. Marelli, F. G. Omenetto, and R. Sapienza, “Gain-based mechanism for pH sensing based on random lasing,”Physical Review Applied, 2017, 7(3): 034005.
[195] [195] W. Z. W. Ismail, G. Liu, K. Zhang, E. M. Goldys, and J. M. Dawes, “Dopamine sensing and measurement using threshold and spectral measurements in random lasers,”Optics Express, 2016, 24(2): A85–A91.
[196] [196] X. Shi, K. Ge, J. H. Tong, and T. Zhai, “Low-cost biosensors based on a plasmonic random laser on fiber facet,”Optics Express, 2020, 28(8): 12233–12242.
[197] [197] Z. Xu, Q. Hong, K. Ge, X. Shi, X. Wang, J. Deng,et al., “Random lasing from label-free living cells for rapid cytometry of apoptosis,”Nano Letters, 2022, 22(1): 172–178.
[198] [198] J. He, S. Hu, J. Ren, X. Cheng, Z. Hu, N. Wang,et al., “Biofluidic random laser cytometer for biophysical phenotyping of cell suspensions,”ACS Sensors, 2019, 4(4): 832–840.
[199] [199] N. Mogharari and B. Sajad, “Random laser emission spectra of the normal and cancerous thyroid tissues,”Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43(4): 2055–2060.
[200] [200] A. N. Azmi, W. Z. Wan Ismail, H. Abu Hassan, M. M. Halim, N. Zainal, O. L. Muskens,et al., “Review of open cavity random lasers as laser-based sensors,”ACS Sensors, 2022, 7(4): 914–928.
[201] [201] A. T. H. Hsieh, P. J. H. Pan, and A. P. Lee, “Rapid label-free DNA analysis in picoliter microfluidic droplets using FRET probes,”Microfluidics and Nanofluidics, 2009, 6(3): 391–401.
[202] [202] S. Song, Z. Liang, J. Zhang, L. Wang, G. Li, and C. Fan, “Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis,”Angewandte Chemie International Edition, 2009, 48(46): 8670–8674.
[203] [203] C. M. Rodrguez Lpez, B. Guzmn Asenjo, A. J. Lloyd, and M. J. Wilkinson, “Direct detection and quantification of methylation in nucleic acid sequences using high-resolution melting analysis,”Analytical Chemistry, 2010, 82(21): 9100–9108.
[204] [204] X. Zhang, W. Lee, and X. Fan, “Bio-switchable optofluidic lasers based on DNA Holliday junctions,”Lab on a Chip, 2012, 12(19): 3673–3675.
[205] [205] Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei,et al., “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,”Lab on a Chip, 2013, 13(17): 3351–3354.
[206] [206] Y. Zhang, X. Gong, Z. Yuan, W. Wang, and Y. C. Chen, “DNA self-switchable microlaser,”ACS Nano, 2020, 14(11): 16122–16130.
[207] [207] L. He, . K. zdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,”Nature Nanotechnology, 2011, 6(7): 428–432.
[208] [208] J. E. Hales, G. Matmon, P. A. Dalby, J. M. Ward, and G. Aeppli, “Virus lasers for biological detection,”Nature Communications, 2019, 10(1): 3594.
[209] [209] M. C. Gather and S. H. Yun, “Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein,”Optics Letters, 2011, 36(16): 3299–3301.
[210] [210] A. Jon, M. Aas, Y. Karadag, S. Maniolu, S. Anand, D. McGloin,et al., “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,”Lab on a Chip, 2014, 14(16): 3093–3100.
[211] [211] H. Altug, S. H. Oh, S. A. Maier, and J. Homola, “Advances and applications of nanophotonic biosensors,”Nature Nanotechnology, 2022, 17(1): 5–16.
[212] [212] C. Feng, Z. Xu, X. Wang, H. Yang, L. Zheng, and H. Fu, “Organic-nanowire-SiO2 core-shell microlasers with highly polarized and narrow emissions for biological imaging,”ACS Applied Materials & Interfaces, 2017, 9(8): 7385–7391.
[213] [213] E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington,et al., “Spaser as a biological probe,”Nature Communications, 2017, 8(1): 15528.
[214] [214] M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,”Optica, 2017, 4(9): 1080–1085.
[215] [215] Y. C. Chen, X. Li, H. Zhu, W. H. Weng, X. Tan, Q. Chen,et al., “Monitoring neuron activities and interactions with laser emissions,”ACS Photonics, 2020, 7(8): 2182–2189.
[216] [216] C. Gong, F. Sun, G. Yang, C. Wang, C. Huang, and Y. C. Chen, “Multifunctional laser imaging of cancer cell secretion with hybrid liquid crystal resonators,”Laser & Photonics Reviews, 2022, 16(8): 2100734.
[217] [217] Z. Qiao, H. Xu, N. Zhang, X. Gong, C. Gong, G. Yang,et al., “Cellular features revealed by transverse laser modes in frequency domain,”Advanced Science, 2022, 9(1): 2270014.
[218] [218] X. Li, Y. Qin, X. Tan, Y. C. Chen, Q. Chen, W. H. Weng,et al., “Ultrasound modulated droplet lasers,”ACS Photonics, 2019, 6(2): 531–537.
[219] [219] X. Li, W. Zhang, W. Y. Wang, X. Wu, Y. Li, X. Tan,et al., “Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers,”Biomedical Optics Express, 2020, 11(7): 3659–3672.
[220] [220] X. Li, W. Zhang, Y. Li, X. Wu, M. Wang, X. Tan,et al., “In vivo tracking of individual stem cells labeled with nanowire lasers using multimodality imaging,”Biomedical Optics Express, 2022, 13(9): 4706.
[221] [221] G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” NatureCommunications, 2013, 4: 1994.
[222] [222] B. B. Li, L. Ou, Y. Lei, and Y. C. Liu, “Cavity optomechanical sensing,”Nanophotonics, 2021, 10(11): 2799–2832.
[223] [223] J. Zhang, B. Peng, . K. zdemir, K. Pichler, D. O. Krimer, G. Zhao,et al., “A phonon laser operating at an exceptional point,”Nature Photonics, 2018, 12(8): 479–484.
[224] [224] J. Yang, T. Qin, F. Zhang, X. Chen, X. Jiang, and W. Wan, “Multiphysical sensing of light, sound and microwave in a microcavity Brillouin laser,”Nanophotonics, 2020, 9(9): 2915–2925.
[225] [225] H. Wisniewski, L. Richardson, A. Hines, A. Laurain, and F. Guzmn, “Optomechanical lasers for inertial sensing,”Journal of the Optical Society of America A, 2020, 37(9): B87–B92.
[226] [226] N. Wang, H. Wen, J. C. A. Zacarias, J. E. Antonio-Lopez, Y. Zhang, D. C. Delgado,et al., “Laser2: a two-domain photon-phonon laser,”Science Advances, 2023, 9(26): eadg7841.
[227] [227] Z. S. Wang, H. A. Rabitz, and M. O. Scully, “The single-molecule dye laser,”Laser Physics, 2005, 15(1): 118–123.
[228] [228] C. Gong, X. Yang, S. J. Tang, Q. Q. Zhang, Y. Wang, Y. L. Liu,et al., “Submonolayer biolasers for ultrasensitive biomarker detection,”Light: Science & Applications, 2023, 12: 292.
Get Citation
Copy Citation Text
WU Xiaoqin, ZHU Chunyan, WANG Yipei, FAN Xudong. Micro/Nano Lasers for Biomolecular Sensing and Cellular Analysis[J]. Photonic Sensors, 2025, 15(1): 250123
Received: Sep. 20, 2023
Accepted: May. 13, 2025
Published Online: May. 13, 2025
The Author Email: