Laser & Optoelectronics Progress, Volume. 57, Issue 22, 222801(2020)
Super-Pixel Segmentation of Remote Sensing Image Based on Improved Simple Linear Iterative Clustering Algorithm
Fig. 1. Search space of K-means and SLIC algorithm. (a) K-means algorithm; (b) SLIC algorithm
Fig. 2. Super-pixel segmentation results of SLIC algorithm. (a) Original image; (b) K=100; (c) K=300; (d) K=500
Fig. 3. Initialization process of clustering center. (a) Random selection; (b) computational gradient; (c) clustering center
Fig. 4. Super-pixel segmentation result obtained by SLIC algorithm. (a) Input image; (b) super-pixel segmentation result; (c) partial enlarged drawing
Fig. 5. Comparison of segmentation results. (a) SLIC algorithm; (b) improved algorithm
Fig. 6. Super-pixel segmentation results of different algorithms (K=100). (a) SLIC0 algorithm; (b) Ref.[23]; (c) TurboPixel algorithm; (d) SLIC algorithm; (e) our algorithm
|
|
Get Citation
Copy Citation Text
Xinlei Ren, Yangping Wang. Super-Pixel Segmentation of Remote Sensing Image Based on Improved Simple Linear Iterative Clustering Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(22): 222801
Category: Remote Sensing and Sensors
Received: Mar. 16, 2020
Accepted: Apr. 20, 2020
Published Online: Nov. 4, 2020
The Author Email: Xinlei Ren (121931236@qq.com)