Opto-Electronic Engineering, Volume. 52, Issue 2, 240285-1(2025)
Research progress on on-chip integrated optical isolators
[1] Pérez D, Gasulla I, Crudgington L et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 8, 636(2017).
[2] Yun B F, Hu G H, Shi S Q et al. Research progress in integrated microwave photonic chips (Invited)[J]. Acta Opt Sin, 44, 1513029(2024).
[3] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits[J]. Nature, 586, 207-216(2020).
[4] Chi Y L, Yu Y, Gong Q H et al. High-dimensional quantum information processing on programmable integrated photonic chips[J]. Sci China Information Sci, 66, 180501(2023).
[5] Jalas D, Petrov A, Eich M et al. What is—and what is not—an optical isolator[J]. Nat Photonics, 7, 579-582(2013).
[6] Zhang Z J, Yan W, Qin J et al. Integrated nonreciprocal photonic devices (Invited)[J]. Acta Opt Sin, 44, 1513020(2024).
[7] Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics[J]. Sci Technol Adv Mater, 15, 014602(2014).
[8] Bi L, Hu J J, Jiang P et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nat Photonics, 5, 758-762(2011).
[9] Yang J S, Roh J W, Ok S H et al. An integrated optical waveguide isolator based on multimode interference by wafer direct bonding[J]. IEEE Trans Magn, 41, 3520-3522(2005).
[10] Sohn D B, Örsel O E, Bahl G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting[J]. Nat Photonics, 15, 822-827(2021).
[11] Kittlaus E A, Jones W M, Rakich P T et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nat Photonics, 15, 43-52(2021).
[12] Tian H, Liu J Q, Siddharth A et al. Magnetic-free silicon nitride integrated optical isolator[J]. Nat Photonics, 15, 828-836(2021).
[13] Dong P. Travelling-wave Mach-Zehnder modulators functioning as optical isolators[J]. Opt Express, 23, 10498-10505(2015).
[14] Yu M J, Cheng R, Reimer C et al. Integrated electro-optic isolator on thin-film lithium niobate[J]. Nat Photonics, 17, 666-671(2023).
[15] Shah M, Briggs I, Chen P K et al. Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate[J]. Opt Lett, 48, 1978-1981(2023).
[18] White A D, Ahn G H, van Gasse K et al. Integrated passive nonlinear optical isolators[J]. Nat Photonics, 17, 143-149(2023).
[19] Herrmann J F, Ansari V, Wang J H et al. Mirror symmetric on-chip frequency circulation of light[J]. Nat Photonics, 16, 603-608(2022).
[20] Abdelsalam K, Li T F, Khurgin J B et al. Linear isolators using wavelength conversion[J]. Optica, 7, 209-213(2020).
[21] Chen W T, Liu L, Zhao J et al. On-chip broadband, compact TM mode Mach–Zehnder optical isolator based on InP-on-insulator platforms[J]. Nanomaterials, 14, 709(2024).
[22] Potton R J. Reciprocity in optics[J]. Rep Prog Phys, 67, 717-754(2004).
[23] Adam J D, Davis L E, Dionne G F et al. Ferrite devices and materials[J]. IEEE Trans Microwave Theory Tech, 50, 721-737(2002).
[24] Dötsch H, Bahlmann N, Zhuromskyy O et al. Applications of magneto-optical waveguides in integrated optics: review[J]. J Opt Soc Am B, 22, 240-253(2005).
[25] Karki D, Stenger V, Pollick A et al. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers[J]. J Lightwave Technol, 38, 827-833(2020).
[26] Yan W, Yang Y C, Yang W H et al. On-chip nonreciprocal photonic devices based on hybrid integration of magneto-optical garnet thin films on silicon[J]. IEEE J Sel Top Quantum Electron, 28, 6100515(2022).
[27] Liang X, Xie J L, Deng L J et al. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3−xFe5O12[J]. Appl Phys Lett, 106, 052401(2015).
[28] Zaki A M, Blythe H J, Heald S M et al. Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique[J]. J Magn Magn Mater, 453, 254-257(2018).
[29] Gomi M, Furuyama H, Abe M. Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering[J]. J Appl Phys, 70, 7065-7067(1991).
[30] Mizumoto T, Naito Y. Nonreciprocal propagation characteristics of YIG thin film[J]. IEEE Trans Microwave Theory Tech, 30, 922-925(1982).
[31] Shoji Y, Fujie A, Mizumoto T. Silicon waveguide optical isolator operating for TE mode input light[J]. IEEE J Sel Top Quantum Electron, 22, 4403307(2016).
[32] Zhang Y, Du Q Y, Wang C T et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 6, 473-478(2019).
[33] Huang D N, Pintus P, Zhang C et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics[J]. IEEE J Sel Top Quantum Electron, 22, 4403408(2016).
[34] Du Q Y, Wang C T, Zhang Y F et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio[J]. ACS Photonics, 5, 5010-5016(2018).
[35] Shui K Y, Nie L X, Zhang Y et al. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates[J]. Opt Express, 24, 12856-12867(2016).
[36] Yamaguchi R, Shoji Y, Mizumoto T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input[J]. Opt Express, 26, 21271-21278(2018).
[37] Auracher F, Witte H H. A new design for an integrated optical isolator[J]. Opt Commun, 13, 435-438(1975).
[38] Ghosh S, Keyvavinia S, Van Roy W et al. Ce: YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding[J]. Opt Express, 20, 1839-1848(2012).
[39] Ghosh S, Keyvaninia S, Shirato Y et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce: YIG on silicon-on-insulator waveguide circuits[J]. IEEE Photonics J, 5, 6601108(2013).
[40] Yan W, Yang Y C, Liu S Y et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms[J]. Optica, 7, 1555-1562(2020).
[41] Tien M C, Mizumoto T, Pintus P et al. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets[J]. Opt Express, 19, 11740-11745(2011).
[42] Huang D N, Pintus P, Bowers J E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited][J]. Opt Mater Express, 8, 2471-2483(2018).
[43] Pintus P, Huang D N, Zhang C et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics[J]. J Lightwave Technol, 35, 1429-1437(2017).
[44] Zhuromskyy O, Lohmeyer M, Bahlmann N et al. Analysis of nonreciprocal light propagation in multimode imaging devices[J]. Opt Quantum Electron, 32, 885-897(2000).
[45] Furuya K, Nemoto T, Kato K et al. Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer[J]. J Lightwave Technol, 34, 1699-1705(2016).
[46] Yokoi H, Mizumoto T, Shinjo N et al. Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift[J]. Appl Opt, 39, 6158-6164(2000).
[47] Yokoi H, Shoji Y, Shin E et al. Interferometric optical isolator employing a nonreciprocal phase shift operated in a unidirectional magnetic field[J]. Appl Opt, 43, 4745-4752(2004).
[48] Shoji Y, Mizumoto T, Yokoi H et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding[J]. Appl Phys Lett, 92, 071117(2008).
[49] Ishida E, Miura K, Shoji Y et al. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift[J]. Opt Express, 25, 452-462(2017).
[50] Huang D N, Pintus P, Shoji Y et al. Integrated broadband Ce: YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range[J]. Opt Lett, 42, 4901-4904(2017).
[51] Huang D N, Pintus P, Zhang C et al. Dynamically reconfigurable integrated optical circulators[J]. Optica, 4, 23-30(2017).
[52] Liu S Y, Shoji Y, Mizumoto T. Mode-evolution-based TE mode magneto-optical isolator using asymmetric adiabatic tapered waveguides[J]. Opt Express, 29, 22838-22846(2021).
[53] Liu L, Chen W T, Zhao J et al. Two structural designs of broadband, low-loss, and compact TM magneto-optical isolator based on GaAs-on-insulator[J]. Nanomaterials, 14, 400(2024).
[54] Tadesse S A, Li M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies[J]. Nat Commun, 5, 5402(2014).
[55] Liu J Q, Tian H, Lucas E et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 583, 385-390(2020).
[56] Tadesse S A, Li H, Liu Q Y et al. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band[J]. Appl Phys Lett, 107, 201113(2015).
[57] Luo Z F, Zhang A X, Huang W X et al. Aluminum nitride thin film based reconfigurable integrated photonic devices[J]. IEEE J Sel Top Quantum Electron, 29, 9300119(2023).
[58] Shao L B, Yu M J, Maity S et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 6, 1498-1505(2019).
[59] Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nat Photonics, 12, 91-97(2018).
[60] Kuhn L, Heidrich P F, Lean E G. Optical guided wave mode conversion by an acoustic surface wave[J]. Appl Phys Lett, 19, 428-430(1971).
[61] Sohn D B, Bahl G. Direction reconfigurable nonreciprocal acousto-optic modulator on chip[J]. APL Photonics, 4, 126103(2019).
[62] Tian H, Liu J Q, Dong B et al. Hybrid integrated photonics using bulk acoustic resonators[J]. Nat Commun, 11, 3073(2020).
[63] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[64] Bhandare S, Ibrahim S K, Sandel D et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material[J]. IEEE J Sel Top Quantum Electron, 11, 417-421(2005).
[65] Dong P, Gui C C. Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach–Zehnder modulators[J]. Opt Lett, 41, 2723-2726(2016).
[66] Dostart N, Gevorgyan H, Onural D et al. Optical isolation using microring modulators[J]. Opt Lett, 46, 460-463(2021).
[67] Del Bino L, Silver J M, Stebbings S L et al. Symmetry breaking of counter-propagating light in a nonlinear resonator[J]. Sci Rep, 7, 43142(2017).
[68] Cheng Y. Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration (Invited)[J]. Chin J Lasers, 51, 0119001(2024).
Get Citation
Copy Citation Text
Zongqi Yang, Wenxiu Li, Xin Sun, Xinyao Huang, He Yang, Hao Zhang, Anping Huang, Zhisong Xiao. Research progress on on-chip integrated optical isolators[J]. Opto-Electronic Engineering, 2025, 52(2): 240285-1
Category:
Received: Dec. 5, 2024
Accepted: Feb. 13, 2025
Published Online: Apr. 27, 2025
The Author Email: He Yang (张浩), Hao Zhang (杨合)